Objectives
To explore the association between sex-specific adiposity trajectories among Adolescents to early adulthood with incident high blood pressure (HBP) and high plasma glucose (HPG).
Methods
We studied body mass index (BMI) trajectories among1159 (male = 517) and 664 (male = 263) Iranian adolescents, aged 12–20 years, for incident HPG and HBP, respectively. Latent Class Growth Mixture Modeling (LCGMM) on longitudinal data was used to determine sex-specific and distinct BMI trajectories. Logistic regressions were applied to estimate the relationship between latent class membership with HBP and HPG, considering normal trajectory as the reference.
Results
For both HBP and HPG, LCGMM determined two and three distinct BMI trajectories in males and females, respectively. During a follow-up of 12Years 104 (male = 62) and 111(male = 59) cases of HPG and HBP were found, respectively. Among females, faster BMI increases (i.e. overweight to early obese trajectory) but not overweight (i.e. those with BMI = 27.3 kg/m
2
at baseline) trajectories increased the risk of HPG by adjusted odds ratios (ORs), 2.74 (1.10–5.80) and 0.79 (0.22–2.82), respectively; regarding HBP, the corresponding value for overweight to late obese trajectory was 3.72 (1.37–11.02). Among males, for HBP, the overweight trajectory increased the risk [2.09 (1.04–4.03)]; however, for incident HPG, none of the trajectories showed significant risk.
Conclusions
Among females, trend of increasing BMI parallel with age can be a better predictor for risk of developing HPG and HBP than those with higher BMI at baseline.
FPG is a stronger predictor of T2D than the TyG-index, TG/HDL-C, and HOMA-IR indices. Although TyG-index was better than TG/HDL-C in both genders, it did not rank above HOMA-IR.
In this study, using latent class analysis (LCA), we investigated whether there are any homogeneous subclasses of individuals exhibiting different profiles of metabolic syndrome (MetS) components. The current study was conducted within the framework of the Tehran Lipid and Glucose Study (TLGS), a population-based cohort including 6448 subjects, aged 20–50 years. We carried out a LCA on MetS components and assessed the association of some demographic and behavioral variables with membership of latent subclasses using multinomial logistic regression. Four latent classes were identified:(1) Low riskclass, with the lowest probabilities for all MetS components (its prevalence rate in men: 29%, women: 64.7%), (2) MetS with diabetes medication (men: 1%, women: 2.3%), (3) Mets without diabetes medication (men: 32%, women: 13.4%), (4) dyslipidemia (men: 38%, women: 19.6%). In men the forth subclass was more significantly associated with being smoker (odds ratio: 4.49; 95% CI: 1.89–9.97). Our study showed that subjects with MetS could be classified in sub-classes with different origins for their metabolic disorders including drug treated diabetes, those with central obesity and dyslipidemia associated with smoking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.