Conspectus The most important means for tuning and improving a catalyst’s properties is the delicate exchange of the ligand shell around the central metal atom. Perhaps for no other organometallic-catalyzed reaction is this statement more valid than for ruthenium-based olefin metathesis. Indeed, even the simple exchange of an oxygen atom for a sulfur atom in a chelated ruthenium benzylidene about a decade ago resulted in the development of extremely stable, photoactive catalysts. This Account presents our perspective on the development of dormant olefin metathesis catalysts that can be activated by external stimuli and, more specifically, the use of light as an attractive inducing agent. The insight gained from a deeper understanding of the properties of cis -dichlororuthenium benzylidenes opened the doorway for the systematic development of new and efficient light-activated olefin metathesis catalysts and catalytic chromatic-orthogonal synthetic schemes. Following this, ways to disrupt the ligand-to-metal bond to accelerate the isomerization process that produced the active precatalyst were actively pursued. Thus, we summarize herein the original thermal activation experiments and how they brought about the discoveries of photoactivation in the sulfur-chelated benzylidene family of catalysts. The specific wavelengths of light that were used to dissociate the sulfur–ruthenium bond allowed us to develop noncommutative catalytic chromatic-orthogonal processes and to combine other photochemical reactions with photoinduced olefin metathesis, including using external light-absorbing molecules as “sunscreens” to achieve novel selectivities. Alteration of the ligand sphere, including modifications of the N-heterocyclic carbene (NHC) ligand and the introduction of cyclic alkyl amino carbene (CAAC) ligands, produced more efficient light-induced activity and special chemical selectivity. The use of electron-rich sulfoxides and, more prominently, phosphites as the agents that induce latency widened the spectrum of light-induced olefin metathesis reactions even further by expanding the colors of light that may now be used to activate the catalysts, which can be used in applications such as stereolithography and 3D printing of tough metathesis-derived polymers.
Herein we report two ruthenium benzylidene complexes with benzylphosphite ligands for olefin metathesis. Unlike the previously reported benzylidene phosphite complexes, the benzylphosphite complexes adopt a cis-dichloro configuration making them latent at ambient temperatures. Irradiation with visible light (420 nm and blue LED) prompts activation of the complexes and induces catalysis of olefin metathesis reactions. One of the complexes, cis-Ru-1, was found to be especially suitable for 3D printing of multilayered polydicyclopentadiene structures with excellent spatial resolutions. Additionally, complex cis-Ru-2 was designed with a chromatic orthogonal "kill switch" based on the 2-nitrobenzyl chemistry, allowing the destruction of the catalyst upon exposure to UV-C light.
The development of selective olefin metathesis catalysts is crucial to achieving new synthetic pathways. Herein, we show that cis‐diiodo/sulfur‐chelated ruthenium benzylidenes do not react with strained cycloalkenes and internal olefins, but can effectively catalyze metathesis reactions of terminal dienes. Surprisingly, internal olefins may partake in olefin metathesis reactions once the ruthenium methylidene intermediate has been generated. This unexpected behavior allows the facile formation of strained cis‐cyclooctene by the RCM reaction of 1,9‐undecadiene. Moreover, cis‐1,4‐polybutadiene may be transformed into small cyclic molecules, including its smallest precursor, 1,5‐cyclooctadiene, by the use of this novel sequence. Norbornenes, including the reactive dicyclopentadiene (DCPD), remain unscathed even in the presence of terminal olefin substrates as they are too bulky to approach the diiodo ruthenium methylidene. The experimental results are accompanied by thorough DFT calculations.
Herein we show the design and synthesis of an electron-rich, sulfoxide-chelated, ruthenium benzylidene. In contrast to previously reported sulfoxide-chelated ruthenium benzylidenes, this complex is more stable in a cis-dichloro conformation and is thus latent in typical olefin metathesis reactions. The complex was characterized by NMR, UV−vis, and X-ray spectroscopy, alongside density functional theory computations. The latent precatalyst could be activated thermally and, depending on the solvent, by UV−C or visible light. In addition, an original "thermo-chromatic" orthogonal sequence was developed, further improved by the use of a thioether chelated complex, where a divergent two-step synthesis can lead to a dihydrofuran or a dihydropyran depending only on the order by which the different stimuli, heat or light, are applied.
A selective ring‐closing metathesis (RCM) reaction for the formation of large macrocycles by using latent sulfur chelated ruthenium iodide benzylidenes, readily activated by thermal and photochemical (UV‐A and visible light) stimuli, is reported. For dienes having one terminal alkene and one internal double bond, the specific affinity of diiodo ruthenium alkylidenes for the unhindered terminus, combined with their reluctance to react with internal olefins, favors RCM over oligomerization, providing high macrocyclic yields even at relatively high concentrations. Alternatively, for substrates containing two internal double bonds, a sacrificial methylene donor can be used to obtain the desired products. With this methodology, lactones, lactams, and macrocyclic ketones ranging from 13‐ to 22‐membered rings could be synthesized in moderate to high yields. In addition, synthetic applications for a one‐pot cyclization/reduction sequence to produce Exaltolide, a natural macrolide (commercial musk), Dihydrocivetone, and other saturated macrocycles have been explored. Thus, we disclose herein an important advantage for diiodo ruthenium benzylidene catalysts over their less selective dichloro counterparts and provide a more profound understanding of the mechanisms that provide the enhanced cyclization outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.