Facebook is the most popular social media platform all over the world and a huge data repository that can be analyzed to predict events as people express their thoughts on this platform. There are some events that often turn into potential crises and these crises might be avoided if we can predict it earlier. This work aims to predict events that are happening or going to happen by analyzing Bengali Facebook posts and help authorities to take proper security arrangements. In this work, the Naïve Bayes Classification model has been used to classify posts as an event. Tokenization, Stopwords removing have been used for data pre-processing. Event phrase matching and 2-Layer Filtering have been used for features collection. Sentiment scores have been measured using Valence Aware Dictionary and Sentiment Reasoner(VADER). Finally, this work predicts four types of events(protesting, celebrating, religious, and neutral) showing 87.5% accuracy. Keywords Event prediction • Naive Bayes • Sentiment analysis • Social media •
Social media platforms have many users who share their thoughts and use these platforms to organize various events collectively. However, different upsetting incidents have occurred in recent years by taking advantage of social media, raising significant concerns. Therefore, considerable research has been carried out to detect any disturbing event and take appropriate measures. This review paper presents a thorough survey to acquire in-depth knowledge about the current research in this field and provide a guideline for future research. We systematically review 67 articles on event detection by sensing social media data from the last decade. We summarize their event detection techniques, tools, technologies, datasets, performance metrics, etc. The reviewed papers mainly address the detection of events, such as natural disasters, traffic, sports, real-time events, and some others. As these detected events can quickly provide an overview of the overall condition of the society, they can significantly help in scrutinizing events disrupting social security. We found that compatibility with different languages, spelling, and dialects is one of the vital challenges the event detection algorithms face. On the other hand, the event detection algorithms need to be robust to process different media, such as texts, images, videos, and locations. We outline that the event detection techniques compatible with heterogeneous data, language, and the platform are still missing. Moreover, the event and its location with a 24 × 7 real-time detection system will bolster the overall event detection performance.
In modern times, ensuring social security has become the prime concern for security administrators. The widespread and recurrent use of social media sites is creating a huge risk for the lives of the general people, as these sites are frequently becoming potential sources of the organization of various types of immoral events. For protecting society from these dangers, a prior detection system which can effectively detect events by analyzing these social media data is essential. However, automating the process of event detection has been difficult, as existing processes must account for diverse writing styles, languages, dialects, post lengths, and et cetera. To overcome these difficulties, we developed an effective model for detecting events, which, for our purposes, were classified as either protesting, celebrating, religious, or neutral, using Bengali and Banglish Facebook posts. At first, the collected posts’ text were processed for language detection, and then, detected posts were pre-processed using stopwords removal and tokenization. Features were then extracted from these pre-processed texts using three sub-processes: filtering, phrase matching of specific events, and sentiment analysis. The collected features were ultimately used to train our Bernoulli Naive Bayes classification model, which was capable of detecting events with 90.41% accuracy (for Bengali-language posts) and 70% (for the Banglish-form posts). For evaluating the effectiveness of our proposed model more precisely, we compared it with two other classifiers: Support Vector Machine and Decision Tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.