To elucidate hydroxyapatite-protein interaction, mutant human lysozymes in which the surface charge was modified by site-directed mutagenesis were used. Five mutant human lysozymes (K1A, K13A, K33A, R10A, R14A) were expressed in yeast. The chromatographic behavior of these lysozymes was studied with a HPLC hydroxyapatite column. Elution molarities of K1A and R14A mutants were greatly lowered. While Lys-13 and Arg-10 are located around Lys-1 and Arg-14, K13A and R10A mutants bound onto hydroxyapatite stronger than K1A and R14A mutants. In combination with an X-ray crystal structure of human lysozyme, it is concluded that the adsorbing site of human lysozyme is at the back of the active site and that Arg-14, Lys-1, Arg-10 and Lys-13 play important roles in binding.z 1998 Federation of European Biochemical Societies.
Bombyx mori lysozyme (BmLZ), from the silkworm, is an insect lysozyme. BmLZ has considerable activity at low temperatures and low activation energies compared with those of hen egg white lysozyme (HEWLZ), according to measurements of the temperature dependencies of relative activity (lytic and glycol chitin) and the estimation of activation energies using the Arrhenius equation. Being so active at low temperatures and low activation energies is characteristic of psychrophilic (cold-adapted) enzymes. The three-dimensional structure of BmLZ has been determined by X-ray crystallography at 2.5 A resolution. The core structure of BmLZ is similar to that of c-type lysozymes. However, BmLZ shows some distinct differences in the two exposed loops and the C-terminal region. A detailed comparison of BmLZ and HEWLZ suggests structural rationalizations for the differences in the catalytic efficiency, stability, and mode of activity between these two lysozymes.
Growth-blocking peptide (GBP) isand Phe 23 -Gln 25 ). In this study, deletion and point mutation analogs of GBP were synthesized to investigate the relationship between the structure of GBP and its mitogenic and plasmatocyte spreading activity. The results indicated that deletion of the N-terminal residue, Glu 1 , eliminated all plasmatocyte spreading activity but did not reduce mitogenic activity. In contrast, deletion of Phe 23 along with the remainder of the C terminus destroyed all mitogenic activity but only slightly reduced plasmatocyte spreading activity. Therefore, the minimal structure of GBP containing mitogenic activity is 2-23 GBP, whereas that with plasmatocyte spreading activity is 1-22 GBP. NMR analysis indicated that these N-and C-terminal deletion mutants retained a similar core structure to wild-type GBP. Replacement of Asp 16 with either a Glu, Leu, or Asn residue similarly did not alter the core structure of GBP. However, these mutants had no mitogenic activity, although they retained about 50% of their plasmatocyte spreading activity. We conclude that specific residues in the unstructured and structured domains of GBP differentially affect the biological activities of GBP, which suggests the possibility that multifunctional properties of this peptide may be mediated by different forms of a GBP receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.