The widespread exposure of humans to parabens present in personal care products is well-known. Nevertheless, little is known about the accumulation of parabens in marine organisms. In this study, six parabens and four common metabolites of parabens were measured in 121 tissue samples from eight species of marine mammals collected along the coastal waters of Florida, California, Washington, and Alaska. Methyl paraben (MeP) was the predominant compound found in the majority of the marine mammal tissues analyzed, and the highest concentration found was 865 ng/g (wet weight [wet wt]) in the livers of bottlenose dolphins from Sarasota Bay, FL. 4-Hydroxybenzoic acid (4-HB) was the predominant paraben metabolite found in all tissue samples. The measured concentrations of 4-HB were on the order of hundreds to thousands of ng/g tissue, and these values are some of the highest ever reported in the literature. MeP and 4-HB concentrations showed a significant positive correlation (p < 0.05), which suggested a common source of exposure to these compounds in marine mammals. Trace concentrations of MeP and 4-HB were found in the livers of polar bears from the Chuckchi Sea and Beaufort Sea, which suggested widespread distribution of MeP and 4-HB in the oceanic environment.
Cognitive function frequently declines with older age, independently of the development of neurodegenerative diseases, and few interventions are known to counter this decline. Exposure to neurotoxic metals may contribute to this decline in cognitive function in older adults. Using the National Health and Nutrition Examination Survey (NHANES) data, the performance of 3042 adults aged 60 years and older on three cognitive tests for immediate, delayed, and working memory were examined in relation to blood concentrations of seven metals and metalloids and urinary concentrations of nineteen metals and metabolites. Using linear regression models, associations between cognitive tests and logarithms of metal exposures were adjusted for age, sex, ethnicity, education level, depression, diabetes, alcohol consumption, and cigarette use. Increased selenium was strongly associated with better performance on all three cognitive tests. Cadmium and lead were negatively associated with performance on all three cognitive tests. Some urinary metabolites of arsenic, urinary lead, cadmium, and tungsten were significantly associated with poor performance on some tests. In older adults, higher selenium levels were strongly associated with better cognitive performance.
The neonicotinoid pesticides acetamiprid (ACE), clothianidin (CTD), dinotefuran (DIN), imidacloprid (IMI), nitenpyram (NTP), thiacloprid (THI), and thiamethoxam (TMX) are widely used in over 120 countries. These pesticides have been regulated in many jurisdictions, including the European Union (EU), the United States, and the United Kingdom, due to adverse effects on non-target organisms, whereas some of these pesticides are permitted in Japan. In the present study, we have 1) measured levels of these pesticides at 103 locations (n = 672) across Gifu Prefecture, 2) analyzed the monthly trends and regionality using R and ArcGIS, and 3) created a predicted contamination map by an ordinary kriging analysis. The concentration levels of the seven neonicotinoid pesticides in surface waters were determined using liquid chromatography with tandem mass spectrometry (LC/ MS / MS) and ranged from < 2.0 to 530 ng / L during the ten-month period. In a total of 672 samples, the top three pesticides detected at high frequency were DIN (76.9%), CTD (48.4%), and IMI (19.6%). The concentration of the neonicotinoid pesticides in environmental waters varied with the time periods of application, physiochemical properties of the pesticides, land use, geological properties of the contamination sources, and other factors. Potential contamination sources were depicted in the predicted contamination maps by using ordinary kriging models, which showed that DIN and CTD are widely present in Gifu Prefecture. Monthly variance of the concentration of IMI differed in the two geological regions, due to differences in the time of application and agricultural products yield. The results of our study contribute to a better understanding of the contamination status of neonicotinoid pesticides by providing reference data (actual pesticide concentrations) as well as predicted contamination maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.