Okinawa propolis (OP) and its major ingredients were reported to have anti-cancer effects and lifespan-extending effects on Caenorhabditis elegans through inactivation of the oncogenic kinase, p21-activated kinase 1 (PAK1). Herein, five prenylated flavonoids from OP, nymphaeol-A (NA), nymphaeol-B (NB), nymphaeol-C (NC), isonymphaeol-B (INB), and 3′-geranyl-naringenin (GN), were evaluated for their anti-inflammatory, anti-diabetic, and anti-Alzheimer’s effects using in vitro techniques. They showed significant anti-inflammatory effects through inhibition of albumin denaturation (half maximal inhibitory concentration (IC50) values of 0.26–1.02 µM), nitrite accumulation (IC50 values of 2.4–7.0 µM), and cyclooxygenase-2 (COX-2) activity (IC50 values of 11.74–24.03 µM). They also strongly suppressed in vitro α-glucosidase enzyme activity with IC50 values of 3.77–5.66 µM. However, only INB and NA inhibited acetylcholinesterase significantly compared to the standard drug donepezil, with IC50 values of 7.23 and 7.77 µM, respectively. Molecular docking results indicated that OP compounds have good binding affinity to the α-glucosidase and acetylcholinesterase proteins, making non-bonded interactions with their active residues and surrounding allosteric residues. In addition, none of the compounds violated Lipinski’s rule of five and showed notable toxicity parameters. Density functional theory (DFT)-based global reactivity descriptors demonstrated their high reactive nature along with the kinetic stability. In conclusion, this combined study suggests that OP components might be beneficial in the treatment of inflammation, type 2 diabetes mellitus, and Alzheimer’s disease.
Propolis from different areas has been reported to inhibit oncogenic/aging kinase PAK1, which is responsible for a variety of conditions, including cancer, longevity, and melanogenesis. Here, a crude extract of Okinawa propolis (OP) was tested against PAK1 activity, Caenorhabditis elegans (C. elegans) longevity, melanogenesis, and growth of cancer cells. We found that OP blocks PAK1 and exhibits anticancer activity in the A549 cell (human lung cancer cell) line with IC50 values of 6 μg/mL and 12 μg/mL, respectively. Most interestingly, OP (1 μg/mL) significantly reduces reproduction and prolongs the lifespan of C. elegans by activating the HSP-16.2 gene, as shown in the PAK1-deficient strain. Furthermore, OP inhibits melanogenesis in a melanoma cell line (B16F10) by downregulating intracellular tyrosinase activity with an IC50 of 30 μg/mL. Our results suggest that OP demonstrated a life span extending effect, C. elegans, anticancer, and antimelanogenic effects via PAK1 inactivation; therefore, this can be a potent natural medicinal supplement against PAK1-dependent diseases.
Neuraminidase is a rational target for influenza inhibition, and the search for neuraminidase inhibitors has been intensified. Mimosine, a nonprotein amino acid, was for the first time identified as a neuraminidase inhibitor with an IC(50) of 9.8 ± 0.2 μM. It was found that mimosine had slow, time-dependent competitive inhibition against the neuraminidase. Furthermore, a small library of mimosine tetrapeptides (M-A(1)-A(2)-A(3)) was synthesized by solid-phase synthesis and was assayed to evaluate their neuraminidase and tyrosinase inhibitory properties. Most of the tetrapeptides showed better activities than mimosine. Mimosine-FFY was the best compound, and it exhibited 50% neuraminidase inhibition at a low micromolar range of 1.8 ± 0.2 μM, whereas for tyrosinase inhibition, it had an IC(50) of 18.3 ± 0.5 μM. The kinetic studies showed that all of the synthesized peptides inhibited neuraminidase noncompetitively with K(i) values ranging from 1.9 -to 7.2 μM. These results suggest that mimosine could be used as a source of bioactive compounds and may have possibilities in the design of drugs as neuraminidase and tyrosinase inhibitors.
The p21-activated kinase 1 (PAK1) is emerging as a promising therapeutic target, and the search for blockers of this oncogenic/aging kinase would be potentially useful for the treatment of various diseases/disorders in the future. Here, we report for the first time the anti-PAK1 activity of compounds derived from three distinct Okinawa plants. 5,6-Dehydrokawain (DK) and dihydro-5,6-dehydrokawain (DDK) from alpinia inhibited directly PAK1 more strongly than mimosine and mimosinol from leucaena. Cucurbitacin I isolated from bitter gourd/melon also exhibited a moderate anti-PAK1 activity. Hispidin, a metabolite of DK, strongly inhibited PAK1 with the IC50 = 5.7 μM. The IC50 of three hispidin derivatives (H1-3) for PAK1 inhibition ranges from 1.2 to 2.0 μM, while mimosine tetrapeptides [mimosine-Phe-Phe-Tyr (MFFY) and mimosine-Phe-Trp-Tyr (MFWY)] inhibit PAK1 at nanomolar level (IC50 of 0.13 and 0.60 μM, respectively). Thus, we hope these derivatives of hispidin and mimosine could be used as potential leading compounds for developing far more potent anti-PAK1 drugs which would be useful for clinical application in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.