Background Trichoderma reesei is considered a candidate fungal enzyme producer for the economic saccharification of cellulosic biomass. However, performance of the saccharifying enzymes produced by T. reesei is insufficient. Therefore, many attempts have been made to improve its performance by heterologous protein expression. In this study, to increase the conversion efficiency of alkaline-pretreated bagasse to sugars, we conducted screening of biomass-degrading enzymes that showed synergistic effects with enzyme preparations produced by recombinant T. reesei.Results Penicillium sp. strain KSM-F532 produced the most effective enzyme to promote the saccharification of alkaline-pretreated bagasse. Biomass-degrading enzymes from strain KSM-F532 were fractionated and analyzed, and a xylanase, named PspXyn10, was identified. The amino acid sequence of PspXyn10 was determined by cDNA analysis: the enzyme shows a modular structure consisting of glycoside hydrolase family 10 (GH10) and carbohydrate-binding module family 1 (CBM1) domains. Purified PspXyn10 was prepared from the supernatant of a recombinant T. reesei strain. The molecular weight of PspXyn10 was estimated to be 55 kDa, and its optimal temperature and pH for xylanase activity were 75 °C and pH 4.5, respectively. More than 80% of the xylanase activity was maintained at 65 °C for 10 min. With beechwood xylan as the substrate, the enzyme had a K m of 2.2 mg/mL and a V max of 332 μmol/min/mg. PspXyn10ΔCBM, which lacked the CBM1 domain, was prepared by limited proteolysis. PspXyn10ΔCBM showed increased activity against soluble xylan, but decreased saccharification efficiency of alkaline-pretreated bagasse. This result indicated that the CBM1 domain of PspXyn10 contributes to the enhancement of the saccharification efficiency of alkaline-pretreated bagasse. A recombinant T. reesei strain, named X2PX10, was constructed from strain X3AB1. X3AB1 is an Aspergillus aculeatus β-glucosidase-expressing T. reesei PC-3-7. X2PX10 also expressed PspXyn10 under the control of the xyn2 promoter. An enzyme preparation from X2PX10 showed almost the same saccharification efficiency of alkaline-pretreated bagasse at half the enzyme dosage as that used for an enzyme preparation from X3AB1.ConclusionsOur results suggest that PspXyn10 promotes the saccharification of alkaline-pretreated bagasse more efficiently than TrXyn3, a GH10 family xylanase from T. reesei, and that the PspXyn10-expressing strain is suitable for enzyme production for biomass saccharification.Electronic supplementary materialThe online version of this article (10.1186/s13068-017-0970-2) contains supplementary material, which is available to authorized users.
Background Trichoderma reesei is a filamentous fungus that is important as an industrial producer of cellulases and hemicellulases due to its high secretion of these enzymes and outstanding performance in industrial fermenters. However, the reduction of enzyme production caused by carbon catabolite repression (CCR) has long been a problem. Disruption of a typical transcriptional regulator, Cre1, does not sufficiently suppress this reduction in the presence of glucose. Results We found that deletion of an α-tubulin (tubB) in T. reesei enhanced both the amount and rate of secretory protein production. Also, the tubulin-disrupted (ΔtubB) strain had high enzyme production and the same enzyme profile even if the strain was cultured in a glucose-containing medium. From transcriptome analysis, the ΔtubB strain exhibited upregulation of both cellulase and hemicellulase genes including some that were not originally induced by cellulose. Moreover, cellobiose transporter genes and the other sugar transporter genes were highly upregulated, and simultaneous uptake of glucose and cellobiose was also observed in the ΔtubB strain. These results suggested that the ΔtubB strain was released from CCR. Conclusion Trichoderma reesei α-tubulin is involved in the transcription of cellulase and hemicellulase genes, as well as in CCR. This is the first report of overcoming CCR by disrupting α-tubulin gene in T. reesei. The disruption of α-tubulin is a promising approach for creating next-generation enzyme-producing strains of T. reesei.
Trichodermareesei is a widely used host for producing cellulase and hemicellulase cocktails for lignocellulosic biomass degradation. Here, we report a genetic modification strategy for industrial T.reesei that enables enzyme production using simple glucose without inducers, such as cellulose, lactose and sophorose. Previously, the mutated XYR1V821F or XYR1A824V was known to induce xylanase and cellulase using only glucose as a carbon source, but its enzyme composition was biased toward xylanases, and its performance was insufficient to degrade lignocellulose efficiently. Therefore, we examined combinations of mutated XYR1V821F and constitutively expressed CRT1, BGLR, VIB1, ACE2, or ACE3, known as cellulase regulators and essential factors for cellulase expression to the T.reesei E1AB1 strain that has been highly mutagenized for improving enzyme productivity and expressing a ß-glucosidase for high enzyme performance. The results showed that expression of ACE3 to the mutated XYR1V821F expressing strain promoted cellulase expression. Furthermore, co-expression of these two transcription factors also resulted in increased productivity, with enzyme productivity 1.5-fold higher than with the conventional single expression of mutated XYR1V821F. Additionally, that productivity was 5.5-fold higher compared to productivity with an enhanced single expression of ACE3. Moreover, although the DNA-binding domain of ACE3 had been considered essential for inducer-free cellulase production, we found that ACE3 with a partially truncated DNA-binding domain was more effective in cellulase production when co-expressed with a mutated XYR1V821F. This study demonstrates that co-expression of the two transcription factors, the mutated XYR1V821F or XYR1A824V and ACE3, resulted in optimized enzyme composition and increased productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.