Understanding the effects of cover crops and tillage on soil physical properties is important for determining soil productivity. This study was conducted at Lincoln University's Freeman Center, USA to evaluate the effects of tillage and cover crop management on soil hydraulic properties. The field site included three replicate blocks in a randomized complete block design with each plot measuring 21.3 m in length and 12.2 m in width. Treatment factors were tillage at two levels (moldboard plow tillage vs. no tillage) and cover crop at two levels (cereal rye (Secale cereal) cover crop vs. no cover crop). Soil samples were collected in late spring/early summer from each treatment at 10-cm depth increments from the soil surface to a depth of 40 cm using cores (76.2-mm diameter and 76.2-mm length). Soil bulk density was 13% lower with tillage compared with no-tillage. Volumetric water content was significantly higher at 0.0 and −0.4 kPa pressures with tillage compared with no tillage. Tillage increased the proportion of coarse mesopores by 32% compared with no tillage, resulting in 87% higher saturated hydraulic conductivity (Ksat). Cover crop increased the proportion of macropores by 24% compared with no cover crop; this can potentially increase water infiltration and reduce runoff. As a result of higher macroporosity, Ksat was higher under cover crop compared with no cover crop. This study demonstrated that tillage can benefit soil hydraulic properties in the short term, but these effects may not persist over time. Cover crops may slightly improve soil hydraulic properties, but longer term studies are needed to evaluate the long-term effects.
Declining biodiversity and ecosystem functions put many of nature’s contributions to people at risk. We review and synthesize the scientific literature to assess 50-y global trends across a broad range of nature’s contributions. We distinguish among trends in potential and realized contributions of nature, as well as environmental conditions and the impacts of changes in nature on human quality of life. We find declining trends in the potential for nature to contribute in the majority of material, nonmaterial, and regulating contributions assessed. However, while the realized production of regulating contributions has decreased, realized production of agricultural and many material commodities has increased. Environmental declines negatively affect quality of life, but social adaptation and the availability of substitutes partially offset this decline for some of nature’s contributions. Adaptation and substitutes, however, are often imperfect and come at some cost. For many of the contributions of nature, we find differing trends across different countries and regions, income classes, and ethnic and social groups, reinforcing the argument for more consistent and equitable measurement.
Core Ideas: Cover crops significantly increased soil organic C compared with no cover crop management. Perennial biofuel and cover crops had significantly higher volumetric heat capacity than row crop management. Under laboratory‐controlled conditions, perennial biofuel and cover crops improved soil thermal properties. Heat transport is an important factor that can influence the soil environment. The objective of this study was to determine if perennial biofuel and cover crops could alter soil thermal properties. Experimental treatments included two levels of cover crops (cover crops [CC] vs. no cover crops) [NC], collectively called row crops (RC), and two biofuel crop treatments. Cover crops used included cereal rye (Secale cereale L.), hairy vetch (Vicia villosa subsp. villosa), and Austrian winter pea [Pisum sativum subsp. arvense (L.) Asch. & Graebn]. The two biofuel treatments included perennial biofuel crops (PB): giant miscanthus (Miscanthus × giganteus J.M. Greef & Deuter ex Hodkinson & Renvoize) and switchgrass (Panicum virgatum L.). Soil samples were collected at 10‐cm depth increments from the soil surface to a depth of 30 cm. Soil thermal properties (thermal conductivity [λ], volumetric heat capacity [CV], thermal diffusivity [D]), and volumetric water content (θ) were determined at 0, ‐33, ‐100 and ‐300 kPa soil water matric potentials. Additionally, bulk density and soil organic C (SOC) were determined. Results showed that PB had 11% higher CV at saturation, probably because they had significantly higher θ and SOC than RC management. Cover crops had 13% higher CV at saturation probably because they had significantly higher θ and SOC than no cover crop management. Row crops had significantly higher λ and D than PB. The results from the current study imply that CC and PB can change soil thermal properties by reducing λ and D and increasing CV under laboratory conditions.
In situ infiltration as influenced by cover crop and tillage managementABSTRCT Water is usually the most limiting factor in agricultural grain crop production. Various agricultural management practices such as tillage and use of cover crops have the potential to influence water infiltration into soil. This study was conducted on a Waldron silt loam (fine, smectictic, calcareous, mesic Aeric Fluvaquents) soil to evaluate the influence of cover crop and tillage management on in situ infiltration. The field site included three replicate blocks in a randomized complete block design with each plot measuring 21.3 m (69.9 ft) length and 12.2 m (40.0 ft) width. The two treatment factors included cover crop at two levels (cereal rye [Secale cereale] cover crop [CC] versus no cover crop [NC]) and tillage at two levels (moldboard plow tillage [Till] versus no-tillage [NT]). Continuous corn (Zea mays L.) was grown. Infiltration rates were measured in all the treatments using a Mariotte system with single ring infiltrometers during the 2014 and 2015 growing seasons. Water infiltration parameters were estimated using the Parlange and Green-Ampt infiltration equations. Parlange and Green-Ampt models appeared to fit measured data well with coefficient of variation ranging from 0.92 to 0.99. In 2014, the saturated hydraulic conductivity (KS) parameter value determined from the Parlange model was 30.4 mm h-1 for NT, about 42% greater than Till. The KS parameter value determined from the Green-Ampt model was 25.9 mm h-1 for NT, about 54% greater than Till. In 2015, the sorptivity (S) parameter value determined from the Parlange model was 38.6 mm h-0.5 for CC, about 82% greater than NC. The S parameter value determined from the Green-Ampt model was 34.0 mm h-0.5 for CC, about 90% greater than NC. Cover crop management can increase water infiltration, which can improve soil quality and enhance the sustainability of crop production systems.
A b s t r a c t. Soil and crop management practices can affect the physical properties and have a direct impact on soil sustainability and crop performance. The objective of this study was to investigate how soil physical properties were affected by three years of tillage, cover crop and crop rotation treatments in a corn and soybean field. The study was conducted on a Waldron siltyloam soil at Lincoln University of Missouri. Soil physical properties studied were soil bulk density, volumetric and gravimetric water contents, volumetric air content, total pore space, air-filled and water-filled pore space, gas diffusion coefficient and pore tortuosity factor. Results showed significant interactions (p<0.05) between cover crop and crop rotation for bulk density, gravimetric and total pore space in 2013. In addition, cover crop also significantly interacted (p<0.05) with tillage for bulk density and total pore space. All soil physical properties studied were significantly affected by the depth of sampling (p<0.0001), except for bulk density, the pore tortuosity factor and total pore space in 2012, and gravimetric and volumetric in 2013. Overall, soil physical properties were significantly affected by the treatments, with the effects changing from one year to another. Addition of a cover crop improved soil physical properties better in rotation than in monoculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.