The utilization of waste materials in soil improvement is the potential for the reduction of the negative effect on the environment and the construction cost as well. One of the waste materials is rice husk ash (RHA), which is an agricultural-by product and can be utilized for soil improvement. This paper aims to present a comprehensive review of the numerous investigations on rice husk ash and its utilization in soil improvement. Based on the literature review, there are some findings as follows: (i) burning rice husk ash in incinerator under a controlled temperature of 500÷8000C and time of 1÷4 hours will produce RHA with high pozzolanic activity; (ii) the RHA can be considered as a stabilizer for different types of soil, and it can be used in combination with different chemical binders and waste materials for soil improvement; (iii) from the view of engineering purposes, the RHA from about 3 to 20%, the lime from 2 to 9%, the cement from 2 to 15% were mostly suggested to improve the soil for pavement, road (base and sub-base layers), and building houses in rural areas. However, the research on the utilization of RHA in soft ground improvement by deep mixing method using lime and cement is still limited, and it is therefore recommended for further research. In addition, the experimental field research on the utilization of RHA for soil improvement in engineering practice needs to be conducted.
The soft soil improvement by vertical drains (PVD, sand drains) are widely used in Vietnam. One of the methods is used for designing soft soil improvement by vertical drains is the Equivalent Plane Strain solution. To use this solution, the permeability coefficient of soil is converted into the equivalent permeability under plane strain. The paper presents the application of this solution to design soft soil improvement by sand drains at Km 3+130 Vi Thanh - Can Tho. It indicated that the settlement results of the soft ground treatment design based on Equivalent Plane Strain solution are similar to those from the Axisymmetric Condition analysis and field monitoring.
Liquefaction of sand is not a rare geological phenomenon. When it happens, it causes great damage to people. However, 1 District, Ho Chi Minh city where despite being a leading economic and political zone of Ho Chi Minh city, where many buildings with different loads and metro lines have been and will be rebuilt, but liquefaction potential has not been assessed. This paper presents a study on liquefaction potential of sand belonging to the Pleistocene sand lithological complex of marine origin on amSQ13 in 1 District, Ho Chi Minh based on standard penetration test (SPT) with different peak ground acceleration scenarios. Research results show that, when the peak ground acceleration amax = 0.0848 g, few points in this area occur liquefaction. However, when peak ground acceleration increased, specifically amax = 0.1 g and amax= 0.15 g, there were 8% and 68% of the survey points in the area where liquefaction occurred, respectively. The study also shows that, with a depth of about 20m, liquefaction in 1 District is still possible with amax = 0.1 g and amax = 0.15 g. The research results contribute to additional references for researchers and urban spatial planning in this area.
Breakwater is an important construction in Chan May port. The construction of breakwaters faces many difficulties due to the soft soil layer with a thickness of more than ten meters and located under the sea level. Breakwater is unstable as well as high of settlement. Therefore, the soft soil under the breakwater was replaced by fine rock. The results show that it is feasible to replace soft soil by fine rock when constructing breakwater in the sea. This is the basis for the design of soft ground treatment for breakwaters in Vietnam.
Consolidation parameters of soft soil play an important role in calculating settlement and soft soil improvement by vertical drainage method (distance, quantity, treatment time). In this study, using oedometer tests, consolidation parameters of some soft soils in the North Central coastal region, Vietnam are clarified. The research results show that the compression index Cc has a strong relationship with the natural water content, liquid limit, dry unit weight, and void ratio of the soil. The consolidation coefficient significantly depends on the applied pressure level, at the over-consolidation stage (normal stress is less than pre-consolidation pressure), the consolidation coefficient is high. By contrast, at the normal consolidation stage (normal stress is greater than pre-consolidation pressure), the coefficient of consolidation is small. The pre-consolidation pressure of soil changes with the distribution depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.