Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.
The purpose of this study was to prepare various 4-substituted N-phenyl-1,2,3-triazole derivatives using click chemistry. The derivatives were screened in vitro for antimicrobial activity against Mycobacterium tuberculosis strain H37Rv (ATCC 27294) using the Alamar Blue susceptibility test. The activity was expressed as the minimum inhibitory concentration (MIC) in μg/mL (μM). Derivatives of isoniazid (INH), (E)-N'-[(1-aryl)-1H-1,2,3-triazole-4-yl)methylene] isonicotinoyl hydrazides, exhibited significant activity with MIC values ranging from 2.5 to 0.62 μg/mL. In addition, they displayed low cytotoxicity against liver cells (hepatoma HepG2) and kidney cells (BGM), thereby providing a high therapeutic index. The results demonstrated the potential and importance of developing new INH derivatives to treat mycobacterial infections.
The infection by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes major public health concern and economic burden. Although clinically approved drugs have been repurposed to treat individuals with 2019 Coronavirus disease (COVID-19), the lack of safety studies and limited efficiency as well jeopardize clinical benefits. Daclatasvir and sofosbuvir (SFV) are clinically approved direct-acting antivirals (DAA) against hepatitis C virus (HCV), with satisfactory safety profile. In the HCV replicative cycle, daclatasvir and SFV target the viral enzymes NS5A and NS5B, respectively. NS5A is endowed with pleotropic activities, which overlap with several proteins from SARS-CoV-2. HCV NS5B and SARS-CoV-2 nsp12 are RNA polymerases that share homology in the nucleotide uptake channel. These characteristics of the HCV and SARS-CoV-2 motivated us to further study the activity of daclatasvir and SFV against the new coronavirus. Daclatasvir consistently inhibited the production of infectious SARS-CoV-2 virus particles in Vero cells, in the hepatoma cell line HuH-7 and in type II pneumocytes (Calu-3), with potencies of 0.8, 0.6 and 1.1 μM, respectively. Daclatasvir targeted early events during SARS-CoV-2 replication cycle and prevented the induction of IL-6 and TNF-α, inflammatory mediators associated with the cytokine storm typical of SARS-CoV-2 infection. Sofosbuvir, although inactive in Vero cells, displayed EC50 values of 6.2 and 9.5 μM in HuH-7 and Calu-3 cells, respectively. Our data point to additional antiviral candidates, in especial daclatasvir, among drugs overlooked for COVID-19, that could immediately enter clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.