In normal conditions, discarding single-use personal protective equipment after use is the rule for its users due to the possibility of being infected, particularly for masks and filtering facepiece respirators. When the demand for these protective tools is not satisfied by the companies supplying them, a scenario of shortages occurs, and new strategies must arise. One possible approach regards the disinfection of these pieces of equipment, but there are multiple methods. Analyzing these methods, Ultraviolet-C (UV-C) becomes an exciting option, given its germicidal capability. This paper aims to describe the state-of-the-art for UV-C sterilization in masks and filtering facepiece respirators. To achieve this goal, we adopted a systematic literature review in multiple databases added to a snowball method to make our sample as robust as possible and encompass a more significant number of studies. We found that UV-C’s germicidal capability is just as good as other sterilization methods. Combining this characteristic with other advantages makes UV-C sterilization desirable compared to other methods, despite its possible disadvantages.
The application of light-emitting diodes (LEDs) has been gaining popularity over the last decades. LEDs have advantages compared to traditional light sources in terms of lifecycle, robustness, compactness, flexibility, and the absence of non-hazardous material. Combining these advantages with the possibility of emitting Ultraviolet C (UVC) makes LEDs serious candidates for light sources in decontamination systems. Nevertheless, it is unclear if they present better decontamination effectiveness than traditional mercury vapor lamps. Hence, this research uses a systematic literature review (SLR) to enlighten three aspects: (1) UVC LEDs’ application according to the field, (2) UVC LEDs’ application in terms of different biological indicators, and (3) the decontamination effectiveness of UVC LEDs in comparison to conventional lamps. UVC LEDs have spread across multiple areas, ranging from health applications to wastewater or food decontamination. The UVC LEDs’ decontamination effectiveness is as good as mercury vapor lamps. In some cases, LEDs even provide better results than conventional mercury vapor lamps. However, the increase in the targets’ complexity (e.g., multilayers or thicker individual layers) may reduce the UVC decontamination efficacy. Therefore, UVC LEDs still require considerable optimization. These findings are stimulating for developing industrial or final users’ applications.
A surgical center is a unique place for biochemical risks, specially concerning surgical aprons, as they tend to be soaked with fluids from both patients and its users during procedures. This study evaluates how the common fabrics used as raw material in reusable surgical aprons behave after washing-sterilization process. In order to perform such analysis, this study uses three types of fabrics: 100% cotton, mixed (67% cotton and 33% polyester), and 100% polyester. The variables "grammage," "pore area," and "bacterial growth" were evaluated in three different moments. The variables "grammage" and "pore area", presented less wear out in cotton fabric. However, it is noticed that textiles with natural fibers (e.g., cotton or mixed) had a higher incidence of bacterial growth. Even though cotton fabric presented one of the highest incidences of bacterial infestation, it was chosen as the best raw material for surgical aprons. To solve this problem mentioned above, we suggested using antibacterial finishes, which are common while manufacturing reusable surgical aprons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.