Thanks to the technological developments that have taken place in recent years, the number, variety and quality of the data obtained using IoT (Internet of Things) sensors have been increasing. Data obtained from IoT sensors have been used in many scientific fields such as land use, climate change, vegetation analysis and air quality forecasting. In this study, a location-based spatial analysis application was carried out using the data obtained from IoT sensors with machine learning. With this application, the average temperature information of the station was estimated with Artificial Neural Network (ANN), Random Forests (RF), and Support Vector Machines (SVM) methods using daily average humidity, average pressure, and station altitude information on real datas of Kayseri acquired from the Turkish State Meteorological Service, and then performances of the methods were compared. In the experimental evaluations, the ANN, RF and SVM methods obtained an average of 0.83, 0.75 and 0.50 R2 values. The ANN method outperformed the RF and SVM methods in location-based temperature estimation.
ÖzÖnemli noktalar, insanlar tarafından ilgi çekici bulunan ve etkileşim kurulmak istenen konum olarak ifade edilir. Dini tesisler insanlar tarafından sıklıkla kullanılan önemli noktalardan bir tanesidir. Dini tesisler insanlar tarafından sıklıkla kullanıldığından dolayı konumları da etkileşim açısından çok büyük önem arz etmektedir. Son dönemlerde yaşanan pandemi süreci de göz önüne alındığında virüsün yayılma hızını azaltmak için insanların bir araya geldiği dini tesis noktalarında yoğunluğu azaltmak veya dengelemek gerekmektedir. Yoğunluk tabanlı analizleri için en yaygın kullanılan ve en baist algoritma olarak ifade edilen k-means algoritması kullanılmaktadır. Tüm bu nedenlerden dolayı yeni yapılacak POI noktalarının yoğunluklara göre dağıtılması çok büyük önem arz etmektedir. Bu çalışmada, dini tesis yapılacak noktaların sadece mesafeye göre değil aynı zamanda nüfus yoğunluğunu dikkate alması için çok boyutlu k-means tabanlı yeni bir yaklaşım önerilmiştir. Bu çalışmada önerilen modelde Kayseri Büyükşehir Belediyesi ve Melikgazi Belediyesine ait mekânsal bina ve dini tesis verileri kullanılmıştır. Önerilen çok boyutlu k-means modelinde, nüfus yoğunluğunu dengelemek için bina verilerinde buluan bağımsız bölüm sayısı boyut olarak dikkate alınmıştır. Önerilen çok boyutlu k-means modelinin performansı gerçek veriler üzerinde klasik iki boyutlu k-means yönteminin performansı ile karşılaştırılmıştır. Deneysel sonuçlar, önerilen çok boyutlu k-means yaklaşımının iki boyutlu k-means yaklaşımına göre nüfüs yoğunluğu açısından daha başarılı sonuçlar ürettiğini göstermiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.