Lung cancer is the main cause of cancer deaths all over the world. An important reason for these deaths was late analysis and worse prediction. With the accelerated improvement of deep learning (DL) approaches, DL can be effectively and widely executed for several real-world applications in healthcare systems, like medical image interpretation and disease analysis. Medical imaging devices can be vital in primary-stage lung tumor analysis and the observation of lung tumors from the treatment. Many medical imaging modalities like computed tomography (CT), chest X-ray (CXR), molecular imaging, magnetic resonance imaging (MRI), and positron emission tomography (PET) systems are widely analyzed for lung cancer detection. This article presents a new dung beetle optimization modified deep feature fusion model for lung cancer detection and classification (DBOMDFF-LCC) technique. The presented DBOMDFF-LCC technique mainly depends upon the feature fusion and hyperparameter tuning process. To accomplish this, the DBOMDFF-LCC technique uses a feature fusion process comprising three DL models, namely residual network (ResNet), densely connected network (DenseNet), and Inception-ResNet-v2. Furthermore, the DBO approach was employed for the optimum hyperparameter selection of three DL approaches. For lung cancer detection purposes, the DBOMDFF-LCC system utilizes a long short-term memory (LSTM) approach. The simulation result analysis of the DBOMDFF-LCC technique of the medical dataset is investigated using different evaluation metrics. The extensive comparative results highlighted the betterment of the DBOMDFF-LCC technique of lung cancer classification.
One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands and schedule generation resources to meet the demand. In this paper, we propose an optimized deep network model for predicting future consumption of energy in smart households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the third part contains a single layer of fully connected neurons. The design of the proposed deep network targets represents the temporal dependencies of energy consumption for boosting prediction accuracy. The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed model is validated using the publicly available UCI household energy dataset. In comparison to the other competing machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq), and standard LSTM, the performance of the proposed model shows promising effectiveness and superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE) and R2. Experimental results show that the proposed optimized deep model achieved an RMSE of (0.0047) and R2 of (0.998), which outperform those values achieved by the other models. In addition, a sensitivity analysis is performed to study the stability and significance of the proposed approach. The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in predicting the future consumption of energy in smart households.
The process of learning about a student’s knowledge and comprehension of a particular subject is referred to as student knowledge assessment. It helps to identify areas where students need additional support or challenge and can be used to evaluate the effectiveness of instruction, make important decisions such as on student placement and curriculum development, and monitor the quality of education. Evaluating student knowledge assessment is essential to measuring student progress, informing instruction, and providing feedback to improve student performance and enhance the overall teaching and learning experience. This research paper is designed to create a machine learning (ML)-based system that assesses student performance and knowledge throughout the course of their studies and pinpoints the key variables that have the most significant effects on that performance and expertise. Additionally, it describes the impact of running models with data that only contains key features on their performance. To classify the students, the paper employs seven different classifiers, including support vector machines (SVM), logistic regression (LR), random forest (RF), decision tree (DT), gradient boosting machine (GBM), Gaussian Naive Bayes (GNB), and multi-layer perceptron (MLP). This paper carries out two experiments to see how best to replicate the automatic classification of student knowledge. In the first experiment, the dataset (Dataset 1) was used in its original state, including all five properties listed in the dataset, to evaluate the performance indicators. In the second experiment, the least correlated variable was removed from the dataset to create a smaller dataset (Dataset 2), and the same set of performance indicators was evaluated. Then, the performance indicators using Dataset 1 and Dataset 2 were compared. The GBM exhibited the highest prediction accuracy of 98%, according to Dataset 1. In terms of prediction error, the GBM also performed well. The accuracy of optimistic forecasts on student performance, denoted as the performance indicator ‘precision’, was highest in GBM at 99%, while DT, RF, and SVM were 98% accurate in their optimistic forecasts for Dataset 1. The second experiment’s findings demonstrated that practically no classifiers showed appreciable improvements in prediction accuracy with a reduced feature set in Dataset 2. It showed that the time required for related learning objects and the knowledge level corresponding to a goal learning object have less impact.
Student engagement is a flexible, complicated concept that includes behavioural, emotional, and cognitive involvement. In order for the instructor to understand how the student interacts with the various activities in the classroom, it is essential to predict their participation. The current work aims to identify the best algorithm for predicting student engagement in the classroom. In this paper, we gathered data from VLE and prepared them using a variety of data preprocessing techniques, including the elimination of missing values, normalization, encoding, and identification of outliers. On our data, we ran a number of machine learning (ML) classification algorithms, and we assessed each one using cross-validation methods and many helpful indicators. The performance of the model is evaluated with metrics like accuracy, precision, recall, and AUC scores. The results show that the CATBoost model is having higher accuracy than the rest. This proposed model outperformed in all the aspects compared to previous research. The results part of this paper indicates that the CATBoost model had an accuracy of approximately 92.23%, a precision of 94.40%, a recall of 100%, and an AUC score of 0.9624. The XGBoost predictive model, the random forest model, and the multilayer perceptron model all demonstrated approximately the same performance overall. We compared the AISAR model with Our model achieved an accuracy of 94.64% compared with AISAR 91% model and it concludes that our results are better. The AISAR model had only around 50% recall compared to our models, which had around 92%. This shows that our models return more relevant results, i.e., if our models predict that a student has high engagement, they are correct 94.64% of the time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.