At the present time, everyone is interested in dealing with images in different fields such as geographic maps, medical images, images obtaining by Camera, microscope, telescope, agricultural field photos, paintings, industrial parts drawings, space photos, etc. Content Based Image Retrieval (CBIR) is an efficient retrieval of relevant images from databases based on features extracted from the image. Follow the proposed system for retrieving images related to a query image from a large set of images, based approach to extract the texture features present in the image using statistical methods (PCA, MAD, GLCM, and Fusion) after pre-processing of images. The proposed system was trained using 1D CNN using a dataset Corel10k which widely used for experimental evaluation of CBIR performance the results of proposed system shows that the highest accuracy is 97.5% using Fusion (PCA, MAD), where the accuracy is 95% using MAD, 90% using PCA. The performance result is acceptable compared to previous work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.