/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
Increasing the energy density of Li-ion batteries is very crucial for the success of electric vehicles, grid-scale energy storage, and nextgeneration consumer electronics. One popular approach is to incrementally increase the capacity of the graphite anode by integrating silicon into composites with capacities between 500 and 1000 mAh/g as a transient and practical alternative to the more-challenging, silicon-only anodes. In this work, we have calculated the percentage of improvement in the capacity of silicon:graphite composites and their impact on energy density of Li-ion full cell. We have used the Design of Experiment method to optimize composites using data from half cells, and it is found that 16% improvements in practical energy density of Li-ion full cells can be achieved using 15 to 25 wt% of silicon. However, full-cell assembly and testing of these composites using LiNi 0.5 Mn 0.5 Co 0.5 O 2 cathode have proven to be challenging and composites with no more than 10 wt% silicon were tested giving 63% capacity retention of 95 mAh/g at only 50 cycles. The work demonstrates that introducing even the smallest amount of silicon into graphite anodes is still a challenge and to overcome that improvements to the different components of the Li-ion battery are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.