Interleukin-6 (IL-6) is likely to be an important mediator of the inflammatory response. We measured levels of this cytokine in plasma samples from 37 patients with sepsis or septic shock obtained at the time of admission to the intensive care unit and related these levels to hemodynamic and biochemical parameters as well as to clinical outcome. In 32 of the 37 patients, increased levels of IL-6 were found, occasionally up to 7,500 times the normal level. The highest IL-6 levels were encountered in patients who suffered from septic shock (P value of the difference between patients with and without shock less than .0001). In addition, IL-6 significantly correlated with plasma lactate (P less than .0001), heart rate (P = .05) and, inversely, with mean arterial pressure (P = .01) and platelet counts (P = .0002). Significant correlations of IL-6 with the anaphylatoxins C3a (P = .0001) and C4a (P = .0002) and with the main inhibitor of the classical pathway of complement, C1-inhibitor (inverse correlation, P = .05), were also observed. IL-6 on admission appeared to be of prognostic significance: levels were higher in septic patients who subsequently died than in those who survived (P = .0003), in particular when only patients with septic shock were considered (P less than .0001). All nine septic patients with levels of less than 40 U/mL on admission survived, whereas 89% of the nine patients with levels exceeding 7,500 U/mL died. These data provide evidence for a role of IL-6 in the pathophysiology of septic shock. Further studies are needed to reveal whether IL-6 in sepsis is directly involved in mediating lethal complications or whether it is to be considered as an “alarm hormone” that reflects endothelial cell injury probably mediated by the anaphylatoxines.
Lactoferrin is an iron-binding glycoprotein of the transferrin family, first isolated from milk but also found in most exocrine secretions as well as in the secondary granules of neutrophils. The many reports on its antimicrobial and antiinflammatory activity in vitro identify lactoferrin as important in host defense against infection and excessive inflammation. Most if not all lactoferrin actions are mediated through iron sequestration and/or interaction with a large variety of ligands including microbial cell wall components and cellular receptors, through its highly positively charged N-terminus. Lactoferrin exerts its effects on glandular epithelia, secretions, mucosal surfaces as well as in the interstitium and vascular compartments where it has been postulated to participate in iron metabolism, disease defense, and modulation of inflammatory and immune responses. A need to understand the diverse biological actions of lactoferrin and the prospect of a wide variety of potential applications in human health care have stimulated studies of the relation between lactoferrin structure and function, the regulation of lactoferrin secretion and development of large scale production of recombinant human lactoferrin (hLf). This review provides a synthesis of our current understanding of lactoferrin. Space limitations have led us to refer to review articles whenever possible; the reader is advised to use these articles for access to the primary experimental literature.
Interleukin-6 (IL-6) is likely to be an important mediator of the inflammatory response. We measured levels of this cytokine in plasma samples from 37 patients with sepsis or septic shock obtained at the time of admission to the intensive care unit and related these levels to hemodynamic and biochemical parameters as well as to clinical outcome. In 32 of the 37 patients, increased levels of IL-6 were found, occasionally up to 7,500 times the normal level. The highest IL-6 levels were encountered in patients who suffered from septic shock (P value of the difference between patients with and without shock less than .0001). In addition, IL-6 significantly correlated with plasma lactate (P less than .0001), heart rate (P = .05) and, inversely, with mean arterial pressure (P = .01) and platelet counts (P = .0002). Significant correlations of IL-6 with the anaphylatoxins C3a (P = .0001) and C4a (P = .0002) and with the main inhibitor of the classical pathway of complement, C1-inhibitor (inverse correlation, P = .05), were also observed. IL-6 on admission appeared to be of prognostic significance: levels were higher in septic patients who subsequently died than in those who survived (P = .0003), in particular when only patients with septic shock were considered (P less than .0001). All nine septic patients with levels of less than 40 U/mL on admission survived, whereas 89% of the nine patients with levels exceeding 7,500 U/mL died. These data provide evidence for a role of IL-6 in the pathophysiology of septic shock. Further studies are needed to reveal whether IL-6 in sepsis is directly involved in mediating lethal complications or whether it is to be considered as an “alarm hormone” that reflects endothelial cell injury probably mediated by the anaphylatoxines.
In four healthy volunteers, we analyzed in detail the immediate in vivo effects on circulating neutrophils of subcutaneous administration of 300 micrograms of granulocyte colony-stimulating factor (G-CSF). Neutrophil activation was assessed by measurement of degranulation. Mobilization of secretory vesicles was shown by a decrease in leukocyte alkaline phosphatase content of the circulating neutrophils. Furthermore, shortly postinjection, Fc gamma RIII was found to be upregulated from an intracellular pool that we identified by immunoelectron microscopy as secretory vesicles. Intravascular release of specific granules was shown by increased plasma levels of lactoferrin and by upregulation of the expression of CD66b and CD11b on circulating neutrophils. Moreover, measurement of fourfold elevated plasma levels of elastase, bound to its physiologic inhibitor alpha 1- antitrypsin, indicated mobilization of azurophil granules. However, no expression of CD63, a marker of azurophil granules, was observed on circulating neutrophils. G-CSF--induced mobilization of secretory vesicles and specific granules could be mimicked in whole blood cultures in vitro, in contrast to release of azurophil granules. Therefore, we postulate that the most activated neutrophils leave the circulation, as observed shortly postinjection, and undergo subsequent stimulation in the endothelial microenvironment, resulting in mobilization of azurophil granules. Our data demonstrate that G-CSF should be regarded as a potent immediate activator of neutrophils in vivo.
Considerable evidence indicates that activation of the contact system of intrinsic coagulation plays a role in the pathogenesis of septic shock. To monitor contact activation in patients with sepsis, we developed highly sensitive radioimmunoassays (RIAs) for factor XIIa-Cl(- )-inhibitor (Cl(-)-Inh) and kallikrein-Cl(-)-Inh complexes using a monoclonal antibody (MoAb Kok 12) that binds to a neodeterminant exposed on both complexed and cleaved Cl(-)-Inh. Plasma samples were serially collected from 48 patients admitted to the intensive care unit because of severe sepsis. Forty percent of patients on at least one occasion had increased levels of plasma factor XIIa-Cl(-)-Inh (greater than 5 x 10(-4) U/mL) and kallikrein-Cl(-)-Inh (greater than 25 x 10(- 4) U/mL), that correlated at a molar ratio of approximately 1:3. Levels of factor XII antigen in plasma and both the highest as well as the levels on admission of plasma factor XIIa-Cl(-)-Inh in 23 patients with septic shock were lower than in 25 normotensive patients (P = .015: factor XII on admission; P = .04: highest factor XIIa-Cl(-)-Inh; P = .01: factor XIIa-Cl(-)-Inh on admission). No significant differences in plasma kallikrein-Cl(-)-Inh or prekallikrein antigen were found between these patients' groups. Elevated Cl(-)-Inh complex levels were measured less frequently in serial samples from patients with septic shock than in those from patients without shock (P less than .0001). Based on these results, we conclude that plasma Cl(-)-Inh complex levels during sepsis may not properly reflect the extent of contact activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.