Doping of low-dimensional graphitic materials, including graphene, graphene quantum dots and single-wall carbon nanotubes with nitrogen, sulfur or boron can significantly change their properties. We report that simple fluorination followed by annealing in a dopant source can superdope low-dimensional graphitic materials with a high level of N, S or B. The superdoping results in the following doping levels: (i) for graphene, 29.82, 17.55 and 10.79 at% for N-, S- and B-doping, respectively; (ii) for graphene quantum dots, 36.38 at% for N-doping; and (iii) for single-wall carbon nanotubes, 7.79 and 10.66 at% for N- and S-doping, respectively. As an example, the N-superdoping of graphene can greatly increase the capacitive energy storage, increase the efficiency of the oxygen reduction reaction and induce ferromagnetism. Furthermore, by changing the degree of fluorination, the doping level can be tuned over a wide range, which is important for optimizing the performance of doped low-dimensional graphitic materials.
An N-superdoped 3D graphene network structure with an N-doping level up to 15.8 at% for high-performance supercapacitor is designed and synthesized, in which the graphene foam with high conductivity acts as skeleton and nested with N-superdoped reduced graphene oxide arogels. This material shows a highly conductive interconnected 3D porous structure (3.33 S cm ), large surface area (583 m g ), low internal resistance (0.4 Ω), good wettability, and a great number of active sites. Because of the multiple synergistic effects of these features, the supercapacitors based on this material show a remarkably excellent electrochemical behavior with a high specific capacitance (of up to 380, 332, and 245 F g in alkaline, acidic, and neutral electrolytes measured in three-electrode configuration, respectively, 297 F g in alkaline electrolytes measured in two-electrode configuration), good rate capability, excellent cycling stability (93.5% retention after 4600 cycles), and low internal resistance (0.4 Ω), resulting in high power density with proper high energy density.
Atomically thin 2D carbon nitride sheets (CNS) are promising materials for photocatalytic applications due to their large surface area and very short charge‐carrier diffusion distance from the bulk to the surface. However, compared to their bulk counterpart, CNS' applications always suffer from an enlarged bandgap and thus narrowed solar absorption range. Here, an approach to significantly increase solar absorption of the atomically thin CNS via fluorination followed by thermal defluorination is reported. This approach can greatly increase the visible‐light absorption of CNS by extending the absorption edge up to 578 nm. The modulated CNS loaded with Pt cocatalyst as a photocatalyst shows a superior photocatalytic hydrogen production activity under visible‐light irradiation to Pt‐CNS. Combining experimental characterization with theoretical calculations shows that this approach can introduce cyano groups into the framework of CNS as well as the accompanied nitrogen vacancies at the edges, which leads to both narrowing the bandgap and changing the charge distribution. This study will provide an effective strategy to increase solar absorption of carbon‐nitride‐based photocatalysts for solar energy conversion applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.