Doping of low-dimensional graphitic materials, including graphene, graphene quantum dots and single-wall carbon nanotubes with nitrogen, sulfur or boron can significantly change their properties. We report that simple fluorination followed by annealing in a dopant source can superdope low-dimensional graphitic materials with a high level of N, S or B. The superdoping results in the following doping levels: (i) for graphene, 29.82, 17.55 and 10.79 at% for N-, S- and B-doping, respectively; (ii) for graphene quantum dots, 36.38 at% for N-doping; and (iii) for single-wall carbon nanotubes, 7.79 and 10.66 at% for N- and S-doping, respectively. As an example, the N-superdoping of graphene can greatly increase the capacitive energy storage, increase the efficiency of the oxygen reduction reaction and induce ferromagnetism. Furthermore, by changing the degree of fluorination, the doping level can be tuned over a wide range, which is important for optimizing the performance of doped low-dimensional graphitic materials.
The long spin diffusion length makes graphene very attractive for novel spintronic devices, and thus has triggered a quest for integrating the charge and spin degrees of freedom. However, ideal graphene is intrinsic non-magnetic, due to a delocalized π bonding network. Therefore, synthesis of ferromagnetic graphene or its derivatives with high magnetization is urgent due to both fundamental and technological importance. Here we report that N-doping can be an effective route to obtain a very high magnetization of ca. 1.66 emu/g, and can make graphene oxide (GO) to be ferromagnetism with a Curie-temperature of 100.2 K. Clearly, our findings can offer the easy realization of ferromagnetic GO with high magnetization, therefore, push the way for potential applications in spintronic devices.
A correlation method was recently adopted to identify selection-favored ‘optimal’ codons from 675 bacterial genomes. Surprisingly, the identities of these optimal codons were found to track the bacterial GC content, leading to a conclusion that selection would generally shape the codon usages to the same direction as the overall mutation does. Raising several concerns, here we report a thorough comparative study on 203 well-selected bacterial species, which strongly suggest that the previous conclusion is likely an illusion. Firstly, the previous study did not preclude species that are suffering weak or no selection pressures on their codon usages. For these species, as showed in this study, the optimal codon identities are prone to be incorrect and follow GC content. Secondly, the previous study only adopted the correlation method, without considering another method to test the reliability of inferred optimal codons. Actually by definition, optimal codons can also be identified by simply comparing codon usages between high- and low-expression genes. After using both methods to identify optimal codons for the selected species, we obtained highly conflicting results, suggesting at least one method is misleading. Further we found a critical problem of correlation method at the step of calculating gene bias level. Due to a failure of accurately defining the background mutation, the problem would result in wrong optimal codon identities. In other words, partial mutational effects on codon choices were mistakenly regarded as selective influences, leading to incorrect and biased optimal codon identities. Finally, considering the translational dynamics, optimal codons identified by comparison method can be well-explained by tRNA compositions, whereas optimal codons identified by correlation method can not be. For all above reasons, we conclude that real optimal codons actually do not track the genomic GC content, and correlation method is misleading in identifying optimal codons and better be avoided.
Emerging evidence indicates that IGF2 plays an important role in various human malignancies, including colorectal cancer (CRC). Hsa-miR-483 is located within intron 7 of the IGF2 locus. However, the mechanism by which increased IGF2 induces carcinogenesis remains largely elusive. DLC-1 has been identified as a candidate tumor suppressor. In this study, we aimed at investigating whether miR-483 transcription is IGF2-dependent, identifying the functional target of miR-483, and evaluating whether tissue and serum miR-483-3p or miR-483-5p levels are associated with CRC. Our results showed that sequences upstream miR-483 had undetectable promoter activity and levels of IGF2, miR-483-3p, and miR-483-5p were synchronously increased in CRC tissues. Positive correlations between IGF2 and miR-483-3p (r=0.4984, ***p<0.0001), and between IGF2 and miR-483-5p (r=0.6659, ***p<0.0001) expression were found. In addition, patients with CRC had a significantly higher serum miR-483-5p level (*p<0.05) compared to normal controls. DLC-1 expression was decreased in colorectal cancer tissues and diminished through transient transfection with miR-483-3p. Our results suggest that IGF2 may exert its oncofunction, at least partly, through its parasitic miR-483 which suppressed DLC-1 in CRC cells. Thus, miR-483 might serve as a new target for therapy and a potential biomarker for the detection of colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.