Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI)1–6. Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders7, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a ‘senolytic’ pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type– and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.
Calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) couples increases in cellular Ca2+ to fundamental responses in excitable cells. CaMKII was identified over 20 years ago by activation dependence on Ca2+/CaM, but recent evidence shows that CaMKII activity is also enhanced by pro-oxidant conditions. Here we show that oxidation of paired regulatory domain methionine residues sustains CaMKII activity in the absence of Ca2+/CaM. CaMKII is activated by angiotensin II (AngII)-induced oxidation, leading to apoptosis in cardiomyocytes both in vitro and in vivo. CaMKII oxidation is reversed by methionine sulfoxide reductase A (MsrA), and MsrA-/- mice show exaggerated CaMKII oxidation and myocardial apoptosis, impaired cardiac function, and increased mortality after myocardial infarction. Our data demonstrate a dynamic mechanism for CaMKII activation by oxidation and highlight the critical importance of oxidation-dependent CaMKII activation to AngII and ischemic myocardial apoptosis.
SUMMARY The sirtuin gene family (SIRT) is hypothesized to regulate the aging process and play a role in cellular repair. This work demonstrates that SIRT3−/− mouse embryonic fibroblasts (MEFs) exhibit abnormal mitochondrial physiology as well as increases in stress-induced superoxide levels and genomic instability. Expression of a single oncogene (Myc or Ras) in SIRT3−/− MEFs results in in vitro transformation and altered intracellular metabolism. Superoxide dismutase prevents transformation by a single oncogene in SIRT3−/− MEFs and reverses the tumor permissive phenotype as well as stress-induced genomic instability. In addition, SIRT3−/− mice develop ER/PR-positive mammary tumors. Finally, human breast and other human cancer specimens exhibit reduced SIRT3 levels. These results identify SIRT3 as a genomically expressed, mitochondrial localized tumor suppressor.
Cancer cells, relative to normal cells, demonstrate increased sensitivity to glucose deprivation-induced cytotoxicity. To determine if oxidative stress mediated by O2•− and hydroperoxides contributed to the differential susceptibility of human epithelial cancer cells to glucose deprivation, oxidation of dihydroethidine (DHE; for O2•−) and 5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate (CDCFH2; for hydroperoxides) were measured in human colon and breast cancer cells (HT29, HCT116, SW480, MB231) and compared to normal human cells (FHC, 33Co, HMEC). Cancer cells showed significant increases in DHE (2–20 fold) and CDCFH2 (1.8–10 fold) oxidation, relative to normal cells that were more pronounced in the presence of the mitochondrial electron transport chain blocker, antimycin A. Furthermore, HCT116 and MB231 cells were more susceptible to glucose deprivation-induced cytotoxicity and oxidative stress, relative to 33Co and HMEC. HT-29 cells were also more susceptible to 2-deoxyglucose-(2DG)-induced cytotoxicity, relative to FHC. Over expression of manganese superoxide dismutase and mitochondrially targeted catalase significantly protected HCT116 and MB231 cells from glucose deprivation-induced cytotoxicity and oxidative stress, as well as protecting HT-29 cells from 2DG-induced cytotoxicity. These results show cancer cells (relative to normal cells) demonstrate increased steady-state levels of reactive oxygen species (ROS, i.e. O2•− and H2O2) that contribute to differential susceptibility to glucose deprivation-induced cytotoxicity and oxidative stress. These studies support the hypotheses that cancer cells increase glucose metabolism to compensate for excess metabolic production of ROS as well as that inhibition of glucose and hydroperoxide metabolism may provide a biochemical target for selectively enhancing cytotoxicity and oxidative stress in human cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.