Empirical models have simulated the consequences of uplift and orographic-precipitation on the evolution of orogens whereas the effects of these forcings on ridgelines and consequent topography of natural landscapes remain equivocal. Here we demonstrate the feedback of a terrestrial landscape in NW Borneo subject to uplift and precipitation gradient owing to orographic effect, and leading to less-predictable flooding and irreversible damages to life and property. Disequilibrium in a large catchment recording the lowest rainfall rates in Borneo, and adjacent drainage basins as determined through χ, a proxy for steady–state channel elevation, is shown to result in dynamic migration of water divide from the windward-side of the orogen towards the leeward-side to attain equilibrium. Loss of drainage area in the leeward-side reduces erosion rates with progressive shortening resulting in an unstable landscape with tectonic uplift, gravity faults and debris flows. 14C dating of exhumed cut-and-fill terraces reveal a Mid–Pleistocene age, suggesting tectonic events in the trend of exhumation rates (>7 mm a−1) estimated by thermochronology, and confirmed by morphotectonic and sedimentological analyses. Our study suggests that divide migration leads to lowered erosion rates, channel narrowing, and sediment accretion in intermontane basins on the leeward-side ultimately resulting in enhanced flooding.
A substantial proportion of proven oil and gas reserves of the world is contained in the carbonate reservoir. It is estimated that about 60% of the world’s oil and 40% of gas reserves are confined in carbonate reservoirs. Exploration and development of hydrocarbons in carbonate reservoirs are much more challenging due to poor seismic imaging and reservoir heterogeneity caused by diagenetic changes. Evaluation of carbonate reservoirs has been a high priority for researchers and geoscientists working in the petroleum industry mainly due to the challenges presented by these highly heterogeneous reservoir rocks. It is essential for geoscientists, petrophysicists, and engineers to work together from initial phases of exploration and delineation of the pool through mature stages of production, to extract as much information as possible to produce maximum hydrocarbons from the field for the commercial viability of the project. In the absence of the well-log data, the properties are inferred from the inversion of seismic data alone. In oil and gas exploration and production industries, seismic inversion is proven as a tool for tracing the subsurface reservoir facies and their fluid contents. In this paper, seismic inversion demonstrates the understanding of lithology and includes the full band of frequency in our initial model to incorporate the detailed study about the basin for prospect evaluation. 3D seismic data along with the geological & petrophysical information and electrologs acquired from drilled wells are used for interpretation and inversion of seismic data to understand the reservoir geometry and facies variation including the distribution of intervening tight layers within the Miocene carbonate reservoir in the study area of Central Luconia. The out-come of the seismic post-stack inversion technique shows a better subsurface lithofacies and fluid distribution for delineation and detailed study of the reservoir.
Explosive volcanic events often produce pyroclastic materials that can be recognized from the geological record. These discrete pyroclastics form regional marker beds. Here we report the occurrence of a tephra layer interbedded within very thick coal beds near Mukah, Sarawak, Borneo. Traceable for tens of kilometers in the Mukah area of Sarawak, this tephra layer can be considered as regional stratigraphic marker with precise chronostratigraphic control. Systematic sedimentological, mineralogical, geochemical and zircon U-Pb geochronological studies have revealed a major effusive volcanic event during the latest Middle Miocene, presumably contemporaneous and/or related to a magmatic event of an earlier phase of the Mt. Kinabalu pluton or magmatism in West Sarawak or East Sabah. The volcanic event had promoted catastrophic flooding of coastal swamps and fallout from the ash clouds that formed a regionally monotonous tephra layer across the Serravallian-Tortonian boundary. In conjunction with the regional occurrences of trap rocks, structural trends and known tectonic events, we constrained the regional depositional environments, and climate. The tephra layer was deposited in a coastal plain-swamp,seasonal, shallow, high-moderate energy fluvial channel-lacustrine environmental setting, wherein atmospheric fallout and eroded material from regoliths formed over older basement and volcanic rocks of the hinterland which were mixed to produce the tephra layer. This tephra layer is sandwiched between the very thick coal beds. A pre-existent volcanic chamber that was active for a long time, also experienced periodic explosive activity from probably the same magma chamber and conduit and including a major explosive activity that recycled early-formed crystals and felsic magma (rhyolite-dacite) during the major effusive event are also recognized. Our findings provide robust evidence for the prevalence of intensive chemical weathering under a wet-humid climate, and relative tectonic quiescence before the major effusive event, and the existence of vast, monotonously gently-sloping coastal plains and luxuriant vegetation akin to the present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.