This paper presents optimisation of a measuring probe path in inspecting the prismatic parts on a CMM. The optimisation model is based on: (i) the mathematical model that establishes an initial collision-free path presented by a set of points, and (ii) the solution of Travelling Salesman Problem (TSP) obtained with Ant Colony Optimisation (ACO). In order to solve TSP, an ACO algorithm that aims to find the shortest path of ant colony movement (i.e. the optimised path) is applied. Then, the optimised path is compared with the measuring path obtained with online programming on CMM ZEISS UMM500 and with the measuring path obtained in the CMM inspection module of Pro/ENGINEER ® software. The results of comparing the optimised path with the other two generated paths show that the optimised path is at least 20% shorter than the path obtained by on-line programming on CMM ZEISS UMM500, and at least 10% shorter than the path obtained by using the CMM module in Pro/ENGINEER ® .
Industry 4.0 represents high-level methodologies for the development of new generation manufacturing metrology systems, which are more intelligent (smart), autonomous, flexible, high-productive, and self-adaptable. One of the systems capable of responding to these challenges is a cyber-physical manufacturing metrology system (CP2MS) with techniques of artificial intelligence (AI). In general, CP2MS systems generate Big data, horizontally by integration [coordinate measuring machines (CMMs)] and vertically by control. This paper presents a cyber-physical manufacturing metrology model (CP3M) for Industry 4.0 developed by applying AI techniques such as engineering ontology (EO), ant-colony optimization (ACO), and genetic algorithms (GAs). Particularly, the CP3M presents an intelligent approach of probe configuration and setup planning for inspection of prismatic measurement parts (PMPs) on a CMM. A set of possible PMP setups and probe configurations is reduced to optimal number using developed GA-based methodology. The major novelty is the development of a new CP3M capable of responding to the requirements of an Industry 4.0 concept such as intelligent, autonomous, and productive measuring systems. As such, they respond to one smart metrology requirement within the framework of Industry 4.0, referring to the optimal number of PMPs setups and for each setup defines the configurations of probes. The main contribution of the model is productivity increase of the measuring process through the reduction of the total measurement time, as well as the elimination of errors due to the human factor through intelligent planning of probe configuration and part setup. The experiment was successfully performed using a PMP specially designed and manufactured for the purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.