Applying small-angle neutron scattering (SANS) on isotopically labeled samples, we have characterized the thermally driven concentration fluctuations (TCFs), one of the main factors in the phenomenology of blend dynamics, in mixtures of styrene−butadiene rubber (SBR) and oligomers of polystyrene (PS) with different compositions. This system displays a large dynamic asymmetry and is thus a good model to explore the tunability of properties of interest in the rubber industry. The SANS experiments, complemented with neutron diffraction with polarization analysis, have allowed one to determine the UCST behavior of the blend and establish its phase diagram. We find a close vicinity of the spinodal and vitrification lines for intermediate concentrations and samples rich in PS. This induces the freezing of the correlation length for TCF when decreasing the temperature and also has an impact on the reported dielectric response of these mixtures. Furthermore, we have deduced the relevant length scale for segmental relaxation from the comparison of SANS and dielectric results. The values found (≈1.5−2 nm) are close to the Kuhn lengths of the components. The relevance of nanometric length scales in this system could also be tentatively attributed to an underlying nanodomain structure associated with the segregation of phenyl rings and main chains, supported by complementary X-ray diffraction experiments.
We have disentangled the contributions to the glass transition as observed by differential scanning calorimetry (DSC) on simplified systems of industrial interest consisting of blends of styrene–butadiene rubber (SBR) and polystyrene (PS) oligomer. To do this, we have started from a model previously proposed to describe the effects of blending on the equilibrium dynamics of the α-relaxation as monitored by broadband dielectric spectroscopy (BDS). This model is based on the combination of self-concentration and thermally driven concentration fluctuations (TCFs). Considering the direct insight of small-angle neutron scattering on TCFs, blending effects on the α-relaxation can be fully accounted for by using only three free parameters: the self-concentration of the components φ self SBR and φ self PS ) and the relevant length scale of segmental relaxation, 2 R c . Their values were determined from the analysis of the BDS results on these samples, being that obtained for 2 R c ≈ 25Å in the range usually reported for this magnitude in glass-forming systems. Using a similar approach, the distinct contributions to the DSC experiments were evaluated by imposing the dynamical information deduced from BDS and connecting the component segmental dynamics in the blend above the glass-transition temperature T g (at equilibrium) and the way the equilibrium is lost when cooling toward the glassy state. This connection was made through the α-relaxation characteristic time of each component at T g , τ g . The agreement of such constructed curves with the experimental DSC results is excellent just assuming that τ g is not affected by blending.
We investigate by neutron scattering and calorimetry a mixture of styrene-butadiene rubber (SBR) and a commercial resin. The neat materials present a large dynamic contrast, having SBR a much lower glass-transition temperature than the resin. The focus is to exploit neutron scattering selectivity in an isotopically labelled sample where deuterated SBR is the majority component. This direct insight into the resin atomic motions within the mixture allows determining the ‘microscopic’ glass transition of the resin in the presence of the a priori much more mobile SBR. This transition takes place in the vicinity of the initial calorimetric glass transition temperature, mainly dictated by the majority component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.