A major physiologic sign in Parkinson disease is the occurrence of abnormal oscillations in cortico-basal ganglia circuits, which can be normalized by L-DOPA therapy. Under normal circumstances, oscillatory activity in these circuits is modulated as behaviors are learned and performed, but how dopamine depletion affects such modulation is not yet known. We here induced unilateral dopamine depletion in the sensorimotor striatum of rats and then recorded local field potential (LFP) activity in the dopamine-depleted region and its contralateral correspondent as we trained the rats on a conditional T-maze task. Unexpectedly, the dopamine depletion had little effect on oscillations recorded in the pretask baseline period. Instead, the depletion amplified oscillations across delta (∼3 Hz), theta (∼8 Hz), beta (∼13 Hz), and low-gamma (∼48 Hz) ranges selectively during task performance times when each frequency band was most strongly modulated, and only after extensive training had occurred. High-gamma activity (65-100 Hz), in contrast, was weakened independent of task time or learning stage. The depletion also increased spike-field coupling of fast-spiking interneurons to low-gamma oscillations. L-DOPA therapy normalized all of these effects except those at low gamma. Our findings suggest that the task-related and learning-related dynamics of LFP oscillations are the primary targets of dopamine depletion, resulting in overexpression of behaviorally relevant oscillations. L-DOPA normalizes these dynamics except at low-gamma, linked by spike-field coupling to fast-spiking interneurons, now known to undergo structural changes after dopamine depletion and to lack normalization of spike activity following L-DOPA therapy. L oss of the dopamine-containing innervation of the basal ganglia is a primary pathology in Parkinson disease, resulting, in addition to its behavioral effects, in abnormal local field potential (LFP) oscillations within cortico-basal ganglia circuits (1-4). Clinical evidence suggests that successful therapies for Parkinson disease reduce these abnormal LFP oscillations (3-6), establishing them as a central feature of Parkinson disease. In particular, abnormally strong beta-range oscillations (12-30 Hz) and weakened high-frequency gamma oscillations (>70 Hz) have been found in basal ganglia structures. The "antimovement" beta-band oscillations are reduced by both L-DOPA therapy and by deep brain stimulation (DBS) (3-6). How these observations relate to the proposed network functions of oscillatory neural activity is not yet clear. LFP oscillations have been linked not only to motor control but also to sensory perception, attention, learning, memory formation, and interregional communication (7-11). In Parkinson disease models, abnormal patterns of synchrony have been found in rest and locomotion (12)(13)(14), but the effect of dopamine loss on LFP oscillations during complex tasks requiring learning and decision making has not been explored.Here we report that dopamine depletion in the sensorimotor striatum...
Despite evidence that dopamine neurotransmission in the striatum is critical for learning as well as for movement control, little is yet known about how the learning-related dynamics of striatal activity are affected by dopamine depletion, a condition faced in Parkinson’s disease. We made localized intrastriatal 6-hydroxydopamine lesions in rats and recorded within the dopamine-depleted sensorimotor striatal zone and its contralateral correspondent as the animals learned a conditional maze task. Rather than producing global, non-specific elevations in firing rate across the task, the dopamine depletion altered striatal projection neuron activity and fast-spiking interneuron activity selectively, with sharply task-specific and cell-type specific effects, and often, with learning-stage selective effects as well. Striatal projection neurons with strong responses during the maze runs had especially elevated responsiveness during the maze runs. Projection neurons that, instead, fired most strongly prior to maze running showed elevated pre-start firing rates, but not during maze running, as learning progressed. The intrastriatal dopamine depletion severely affected the learning-related patterning of fast-spiking interneuron ensembles, especially during maze running and after extended training. Remarkably, L-DOPA treatment almost entirely reversed the depletion-induced elevations in pre-run firing of the projection neurons, and elevated their responses around start and end of maze runs. By contrast, L-DOPA failed to normalize fast-spiking interneuron activity. Thus the effects of striatal dopamine depletion and restoration on striatal activity are highly dependent not only on cell type, as previously shown, but also on the behavioral activity called for and the state of behavioral learning achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.