Hereditary distal renal tubular acidosis (dRTA) is a rare genetic disease that is caused by mutations in SLC4A1, ATP6V1B1, or ATP6V0A4. However, there are many families with hereditary dRTA in whom the disease-causing genes are unknown. Accordingly, we performed whole exome sequencing and genetic studies of the members of a family with autosomal recessive dRTA of an unknown genetic etiology. Here, we report compound heterozygous pathogenic variations in tryptophan-aspartate repeat domain 72 (WDR72) (c.1777A>G [p.R593G] and c.2522T>A [p.L841Q]) in three affected siblings of a family with dRTA. Both variants segregated with dRTA in the family and were not observed in normal control subjects. Homologous modeling and in silico mutagenesis indicated that R593G and L841Q alter the H-bond formations in the nearby residues, affecting the WDR72 protein structure. All these evidences indicate that the identified WDR72 variations were probably to have caused hereditary dRTA in the reported family. In addition, homozygous nonsense mutation (c.2686C>T [p.R896X]) was identified in another family, strongly supporting the causal role of WDR72 in dRTA. Based on our literature review, WDR72 mutations associated with dRTA have not been previously described. This is the first identification of pathogenic variations in WDR72 as a cause of hereditary dRTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.