SUMMARYThe origin of cells that generate the blastema following appendage amputation has been a long-standing question in epimorphic regeneration studies. The blastema is thought to originate from either stem (or progenitor) cells or differentiated cells of various tissues that undergo dedifferentiation. Here, we investigate the origin of cells that contribute to the regeneration of zebrafish caudal fin skeletal elements. We provide evidence that the process of lepidotrichia (bony rays) regeneration is initiated as early as 24 hours post-amputation and that differentiated scleroblasts acquire a proliferative state, detach from the lepidotrichia surface, migrate distally, integrate into the blastema and dedifferentiate. These findings provide novel insights into the origin of cells in epimorphic appendage regeneration in zebrafish and suggest conservation of regeneration mechanisms between fish and amphibians.
BackgroundZebrafish are able to regenerate many of its tissues and organs after damage. In amphibians this process is regulated by nerve fibres present at the site of injury, which have been proposed to release factors into the amputated limbs/fins, promoting and sustaining the proliferation of blastemal cells. Although some candidate factors have been proposed to mediate the nerve dependency of regeneration, the molecular mechanisms involved in this process remain unclear.ResultsWe have used zebrafish as a model system to address the role of nerve fibres in fin regeneration. We have developed a protocol for pectoral fin denervation followed by amputation and analysed the regenerative process under this experimental conditions. Upon denervation fins were able to close the wound and form a wound epidermis, but could not establish a functional apical epithelial cap, with a posterior failure of blastema formation and outgrowth, and the accumulation of several defects. The expression patterns of genes known to be key players during fin regeneration were altered upon denervation, suggesting that nerves can contribute to the regulation of the Fgf, Wnt and Shh pathways during zebrafish fin regeneration.ConclusionsOur results demonstrate that proper innervation of the zebrafish pectoral fin is essential for a successful regenerative process, and establish this organism as a useful model to understand the molecular and cellular mechanisms of nerve dependence, during vertebrate regeneration.Electronic supplementary materialThe online version of this article (doi:10.1186/s12861-014-0049-2) contains supplementary material, which is available to authorized users.
Abstract.As the video games industry grows and video games become more part of our lives, we are eager for better gaming experiences. One field in which games still have much to gain is in Non-Player Character behavior in socially demanding games, like Role-Playing Games. In Role-Playing Games players have to interact constantly with very simple Non-Player Characters, with no social behavior in most of the cases, which contrasts with the rich social experience that was provided in its traditional pen-and-paper format. What we propose in this paper is that if we create a richer social behavior in Non-Player Characters the player's gaming experience can be improved. In order to attain this we propose a model that has at its core social relationships with/between Non-Player Characters. By doing an evaluation with players, we identified that 80% of them preferred such system, affirming that it created a better gaming experience.
The caudal neural tube (CNT) of the avian embryo is devoid of both dorsal and ventral roots. We show that the lack of ventral roots in the CNT, from somite 48 caudalwards, is due to an absence of post-mitotic motoneurons (MNs). The absence of MNs is not due to a defective notochordal induction since Sonic Hedgehog (SHH) signaling is intact and the caudal notochord is able to induce ectopic MNs when grafted laterally to a host neural tube. The transcription factors involved in MN specification (Pax6, Nkx6.1, and Olig2) are all expressed in the CNT, despite the lower expression level of Pax6, but an overlap between Olig2 and the ventrally expressed transcription factor Nkx2.2 is observed in the CNT. Grafting a quail CNT into the cervical level of a chick host rescues MN generation, demonstrating both the CNT potential for MN generation and the key role of the caudal environment in the MN differentiation blockade. The transplantation of the CNT-flanking somites into the cervical level does not inhibit MN generation. Furthermore, implantation of a retinoic-acid-soaked bead laterally to the CNT does not rescue MN generation. Together, these data indicate that the rostral environment contains a signal different from both SHH and Retinoic Acid that acts on MN differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.