The cell density effect (i.e., the drop in the specific productivity in the baculovirus-insect cells expression system when cells are infected at high cell densities) has been extensively described in the literature. In this article, a model for the central metabolism of serum-free suspension cultures of Spodoptera frugiperda Sf9 cells is proposed and used to investigate the metabolic basis for this phenomenon. The main metabolic pathways (glycolysis, pentose phosphate pathway, tricarboxylic acids cycle, glutaminolysis, and amino acids metabolism), cellular growth and energetics were considered. The analysis of the stoichiometric model allowed further understanding of the interplay of the consumption of carbon and nitrogen sources in insect cells. Moreover, metabolic flux analysis revealed that Sf9 cells undergo a progressive inhibition of central metabolism when grown to high cell densities, for which the incorporation of amino acids carbon backbones into the TCA cycle (mainly glutamine) and the down-regulation of glycolysis are partially responsible. Following infection by baculovirus and cellular division arrest, central energy metabolism depended on the infection strategy chosen (cell concentration at the moment of infection and multiplicity of infection), inhibition being observed at high cell densities. Interestingly, the energetic status of the culture correlated with the decrease in cellular production of baculovirus, meaning that there is room for process optimization through the application of metabolic engineering techniques.
Chinese hamster ovary (CHO) cells are preferred hosts for the production of recombinant biopharmaceuticals. Efforts to optimize these bioprocesses have largely relied on empirical experience and our knowledge of cellular behavior in culture is incomplete. More recently, comprehensive investigations of metabolic network operation have started to be used to uncover traits associated with optimal growth and recombinant protein production. In this work, we used (1) H-nuclear magnetic resonance ((1) H-NMR) to analyze the supernatants of glutamine-synthetase (GS)-CHO cell clones expressing variable amounts of an IgG4 under control and butyrate-treated conditions. Exometabolomic data revealed accumulation of several metabolic by-products, indicating inefficiencies at different metabolic nodes. These data were contextualized in a detailed network and the cellular fluxomes estimated through metabolic flux analysis. This approach allowed comparing metabolic activity across different clones, growth phases and culture conditions, in particular the efficiency pertaining to carbon lost to glycerol and lactate accumulation and the characteristic nitrogen metabolism involving high asparagine and serine uptake rates. Importantly, this study shows that early butyrate treatment has a marked effect on sustaining high nutrient consumption along culture time, being more pronounced during the stationary phase when extra energy generation and biosynthetic activity is fueled to increase IgG formation. Collectively, the information generated contributes to deepening our understanding of CHO cells metabolism in culture, facilitating future design of improved bioprocesses.
Chinese hamster ovary (CHO) cells are the predominant host for production of therapeutic glycoproteins. In particular, the glutamine-synthetase (GS) expression system has been widely used in the biopharmaceutical industry for efficient selection of high-yielding clones. However, much remains unclear on how metabolic wiring affects culture performance. For instance, asparagine and serine have been observed to be the largest nitrogen sources taken up by GS-CHO cells, but their roles in biosynthesis and energy generation are poorly understood. In this work, a comprehensive profiling of extracellular metabolites coupled with an analysis of intracellular label distributions after 1-(13) C-pyruvate supplementation were used to trace metabolic rearrangements in different scenarios of asparagine and serine availability. The absence of asparagine in the medium caused growth arrest, and was associated with a dramatic increase in pyruvate uptake, a higher ratio of pyruvate carboxylation to dehydrogenation and an inability for de novo asparagine synthesis. The release of ammonia and amino acids such as aspartate, glutamate, and alanine were deeply impacted. This confirms asparagine to be essential for these GS-CHO cells as the main source of intracellular nitrogen as well as having an important anaplerotic role in TCA cycle activity. In turn, serine unavailability also negatively affected culture growth while triggering its de novo synthesis, confirmed by label incorporation coming from pyruvate, and reduced glycine and formate secretion congruent with its role as a precursor in the metabolism of one-carbon units. Overall, these results unfold important insights into GS-CHO cells metabolism that lay a clearer basis for fine-tuning bioprocess optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.