Advanced 3D radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated area, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop shaped structures, and moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows time scales of the order of 2 minutes in one model and 1 minutes in the other, higher-resolution, model.
Context. The Extreme Ultraviolet Imager (EUI) is part of the remote sensing instrument package of the ESA/NASA Solar Orbiter mission that will explore the inner heliosphere and observe the Sun from vantage points close to the Sun and out of the ecliptic. Solar Orbiter will advance the “connection science” between solar activity and the heliosphere. Aims. With EUI we aim to improve our understanding of the structure and dynamics of the solar atmosphere, globally as well as at high resolution, and from high solar latitude perspectives. Methods. The EUI consists of three telescopes, the Full Sun Imager and two High Resolution Imagers, which are optimised to image in Lyman-α and EUV (17.4 nm, 30.4 nm) to provide a coverage from chromosphere up to corona. The EUI is designed to cope with the strong constraints imposed by the Solar Orbiter mission characteristics. Limited telemetry availability is compensated by state-of-the-art image compression, onboard image processing, and event selection. The imposed power limitations and potentially harsh radiation environment necessitate the use of novel CMOS sensors. As the unobstructed field of view of the telescopes needs to protrude through the spacecraft’s heat shield, the apertures have been kept as small as possible, without compromising optical performance. This led to a systematic effort to optimise the throughput of every optical element and the reduction of noise levels in the sensor. Results. In this paper we review the design of the two elements of the EUI instrument: the Optical Bench System and the Common Electronic Box. Particular attention is also given to the onboard software, the intended operations, the ground software, and the foreseen data products. Conclusions. The EUI will bring unique science opportunities thanks to its specific design, its viewpoint, and to the planned synergies with the other Solar Orbiter instruments. In particular, we highlight science opportunities brought by the out-of-ecliptic vantage point of the solar poles, the high-resolution imaging of the high chromosphere and corona, and the connection to the outer corona as observed by coronagraphs.
Observations of transition region emission lines reveal the presence of redshifts in lines formed from the top of the chromosphere up to temperatures of about 2.5 × 10 5 K and blueshifts for temperatures above that. However, it is doubtful that the apparent large downward flows in the lower transition region represents an emptying of the corona, so some mechanism must be responsible for maintaining the mass balance between the corona and the lower atmospheric layers. We use a three-dimensional magnetohydrodynamics code to study the cycling of mass between the corona, transition region, and chromosphere by adding a tracer fluid to the simulation in various temperature intervals in the transition region. We find that most of the material seen in transition region emission lines formed at temperatures below 3 × 10 5 K is material that has been rapidly heated from chromospheric temperatures and thereafter is pushed down as it cools. This implies that the bulk of transition region material resides in small loops. In these loops, the density is high and radiative cooling is efficient.
Context. The correct modeling of the scattering polarization signals observed in several strong resonance lines requires taking partial frequency redistribution (PRD) phenomena into account. Modeling scattering polarization with PRD effects is very computationally demanding and the simplifying angle-averaged (AA) approximation is therefore commonly applied. Aims. This work aims to assess the impact and the range of validity of the AA approximation with respect to the general angle-dependent (AD) treatment of PRD effects in the modeling of scattering polarization in strong resonance lines, with a focus on the solar Ca I 4227 Å line. Methods. Spectral line polarization was modeled by solving the radiative transfer problem for polarized radiation, under nonlocal thermodynamic equilibrium conditions, taking PRD effects into account in static one-dimensional semi-empirical atmospheric models presenting arbitrary magnetic fields. The problem was solved through a two-step approach. In step 1, the problem was solved for the intensity only, considering a multilevel atom. In step 2, the problem was solved including polarization, considering a two-level atom with an unpolarized and infinitely sharp lower level, and fixing the lower level population calculated at step 1. Results. The results for the Ca I 4227 Å line show a good agreement between the AA and AD calculations for the Q/I and U/I wings’ signals. However, AA calculations reveal an artificial trough in the line-core peak of the linear polarization profiles, whereas AD calculations show a sharper peak in agreement with the observations. Conclusions. An AD treatment of PRD effects is essential to correctly model the line-core peak of the scattering polarization signal of the Ca I 4227 Å line. By contrast, in the considered static case, the AA approximation seems to be suitable to model the wing scattering polarization lobes and their magnetic sensitivity through magneto-optical effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.