In the past, Unmanned Aerial Vehicles (UAVs) were mostly used in military operations to prevent pilot losses. Nowadays, the fast technological evolution has enabled the production of a class of cost-effective UAVs that can service a plethora of public and civilian applications, especially when configured to work cooperatively to accomplish a task. However, designing a communication network among the UAVs is a challenging task. In this article, we propose a centralized UAV placement strategy, where UAVs are used as flying access points forming a mesh network, providing connectivity to ground nodes deployed in a target area. The geographical placement of UAVs is optimized based on a Multi-Objective Evolutionary Algorithm (MOEA). The goal of the proposed scheme is to cover all ground nodes using a minimum number of UAVs, while maximizing the fulfillment of their data rate requirements. The UAVs can employ different data rates depending on the channel conditions, which are expressed by the Signal-to-Noise-Ratio (SNR). In this work, the elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is used to find a set of optimal positions to place UAVs, given the positions of the ground nodes. We evaluate the trade-off between the number of UAVs used to cover the target area and the data rate requirement of the ground nodes. Simulation results show that the proposed algorithm can optimize the UAV placement given the requirement and the positions of the ground nodes in the geographical area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.