This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs).
Mobile health applications are applied for different purposes. Healthcare professionals and other users can use this type of mobile applications for specific tasks, such as diagnosis, information, prevention, treatment, and communication. This paper presents an analysis of mobile health applications used by healthcare professionals and their patients. A secondary objective of this article is to evaluate the scientific validation of these mobile health applications and to verify if the results provided by these applications have an underlying sound scientific foundation. This study also analyzed literature references and the use of mobile health applications available in online application stores. In general, a large part of these mobile health applications provides information about scientific validation. However, some mobile health applications are not validated. Therefore, the main contribution of this paper is to provide a comprehensive analysis of the usability and user-perceived quality of mobile health applications and the challenges related to scientific validation of these mobile applications.
Several types of sensors have been available in off-the-shelf mobile devices, including motion, magnetic, vision, acoustic, and location sensors. This paper focuses on the fusion of the data acquired from motion and magnetic sensors, i.e., accelerometer, gyroscope and magnetometer sensors, for the recognition of Activities of Daily Living (ADL). Based on pattern recognition techniques, the system developed in this study includes data acquisition, data processing, data fusion, and classification methods like Artificial Neural Networks (ANN). Multiple settings of the ANN were implemented and evaluated in which the best accuracy obtained, with Deep Neural Networks (DNN), was 89.51%. This novel approach applies L 2 regularization and normalization techniques on the sensors' data proved it suitability and reliability for the ADL recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.