Organosulfur compounds have long
played a vital role in organic
chemistry and in the development of novel chemical structures and
architectures. Prominent among these organosulfur compounds are those
involving a sulfur(IV) center, which have been the subject of countless
investigations over more than a hundred years. In addition to a long
list of textbook sulfur-based reactions, there has been a sustained
interest in the chemistry of organosulfur(IV) compounds in recent
years. Of particular interest within organosulfur chemistry is the
ease with which the synthetic chemist can effect a wide range of transformations
through either bond formation or bond cleavage at sulfur. This review
aims to cover the developments of the past decade in the chemistry
of organic sulfur(IV) molecules and provide insight into both the
wide range of reactions which critically rely on this versatile element
and the diverse scaffolds that can thereby be synthesized.
It is textbook knowledge that carboxamides benefit from increased stabilisation of the electrophilic carbonyl carbon when compared to other carbonyl and carboxyl derivatives. This results in a considerably reduced reactivity towards nucleophiles. Accordingly, a perception has been developed of amides as significantly less useful functional handles than their ester and acid chloride counterparts. However, a significant body of research on the selective activation of amides to achieve powerful transformations under mild conditions has emerged over the past decades. This review article aims at placing electrophilic amide activation in both a historical context and in that of natural product synthesis, highlighting the synthetic applications and the potential of this approach.
The electrophilic activation of amides, especially by the action of trifluoromethanesulfonic (triflic) anhydride, enables the formation of highly electrophilic and reactive intermediates, lending themselves to diverse reaction pathways. This synopsis sets out to highlight recent advances in the field of amide activation, focused on the use of triflic anhydride, and the myriad of transformations that can ensue upon addition of several classes of electrophiles to the intermittently generated high energy intermediates.
The chemistry of the carbonyl group is essential to modern organic synthesis. The preparation of substituted, enantioenriched 1,3- or 1,5-dicarbonyls is well developed, as their disconnection naturally follows from the intrinsic polarity of the carbonyl group. By contrast, a general enantioselective access to quaternary stereocenters in acyclic 1,4-dicarbonyl systems remains an unresolved problem, despite the tremendous importance of 2,3-substituted 1,4-dicarbonyl motifs in natural products and drug scaffolds. Here we present a broad enantioselective and stereodivergent strategy to access acyclic, polysubstituted 1,4-dicarbonyls via acid-catalyzed [3,3]-sulfonium rearrangement starting from vinyl sulfoxides and ynamides. The stereochemistry at sulfur governs the absolute sense of chiral induction, whereas the double bond geometry dictates the relative configuration of the final products.
Breaking good: The amide bond is widely recognized as the strongest bond among the carboxylic acid derivatives. Therefore, the potential of amides to serve as synthetic building blocks has remained mostly untapped thus far. This Highlight describes a recent breakthrough that enables the catalytic conversion of amides into esters for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.