BackgroundThe use of prostate cancer screening tools that take into account relevant prebiopsy information (ie, risk calculators) is recommended as a way of determining the risk of cancer and the subsequent need for a prostate biopsy. This has the potential to limit prostate cancer overdiagnosis and subsequent overtreatment. mHealth apps are gaining traction in urological practice and are used by both practitioners and patients for a variety of purposes.ObjectiveThe impetus of the study was to design, develop, and assess a smartphone app for prostate cancer screening, based on the Rotterdam Prostate Cancer Risk Calculator (RPCRC).MethodsThe results of the Rotterdam arm of the European Randomized Study of Screening for Prostate Cancer (ERSPC) study were used to elaborate several algorithms that allowed the risk of prostate cancer to be estimated. A step-by-step workflow was established to ensure that depending on the available clinical information the most complete risk model of the RPCRC was used. The user interface was designed and then the app was developed as a native app for iOS. The usability of the app was assessed using the Post-Study System Usability Questionnaire (PSSUQ) developed by IBM, in a group of 92 participants comprising urologists, general practitioners, and medical students.ResultsA total of 11 questions were built into the app, and, depending on the answers, one of the different algorithms of the RPCRC could be used to predict the risk of prostate cancer and of clinically significant prostate cancer (Gleason score ≥7 and clinical stage >T2b). The system usefulness, information quality, and interface quality scores were high—92% (27.7/30), 87% (26.2/30), and 89% (13.4/15), respectively. No usability problems were identified.ConclusionsThe RPCRC app is helpful in predicting the risk of prostate cancer and, even more importantly, clinically significant prostate cancer. Its algorithms have been externally validated before and the usability score shows the app’s interface is well designed. Further usability testing is required in different populations to verify these results and ensure that it is easy to use, to warrant a broad appeal, and to provide better patient care.
BackgroundUrological mobile medical (mHealth) apps are gaining popularity with both clinicians and patients. mHealth is a rapidly evolving and heterogeneous field, with some urology apps being downloaded over 10,000 times and others not at all. The factors that contribute to medical app downloads have yet to be identified, including the hypothetical influence of expert involvement in app development.ObjectiveThe objective of our study was to identify predictors of the number of urology app downloads.MethodsWe reviewed urology apps available in the Google Play Store and collected publicly available data. Multivariate ordinal logistic regression evaluated the effect of publicly available app variables on the number of apps being downloaded.ResultsOf 129 urology apps eligible for study, only 2 (1.6%) had >10,000 downloads, with half having ≤100 downloads and 4 (3.1%) having none at all. Apps developed with expert urologist involvement (P=.003), optional in-app purchases (P=.01), higher user rating (P<.001), and more user reviews (P<.001) were more likely to be installed. App cost was inversely related to the number of downloads (P<.001). Only data from the Google Play Store and the developers’ websites, but not other platforms, were publicly available for analysis, and the level and nature of expert involvement was not documented.ConclusionsThe explicit participation of urologists in app development is likely to enhance its chances to have a higher number of downloads. This finding should help in the design of better apps and further promote urologist involvement in mHealth. Official certification processes are required to ensure app quality and user safety.
IntroductionSmartphones are increasingly playing a role in healthcare and previous studies assessing medical applications (apps) have raised concerns about lack of expert involvement and low content accuracy. However, there are no such studies in Urology. We reviewed Urology apps with the aim of assessing the level of participation of healthcare professionals (HCP) and scientific Urology associations in their development.Material and MethodsA systematic search was performed on PubMed, Apple's App Store and Google's Play Store, for Urology apps, available in English. Apps were reviewed by three graders to determine the app’s platform, target customer, developer, app type, app category, price and the participation of a HCP or a scientific Urology association in the development.ResultsThe search yielded 372 apps, of which 150 were specific for Urology. A fifth of all apps had no HCP involvement (20.7%) and only a third had been developed with a scientific Urology association (34.7%). The lowest percentage of HCP (13.4%) and urological association (1.9%) involvement was in apps designed for the general population. Furthermore, there was no contribution from an Urology society in "Electronic Medical Record" nor in "Patient Information" apps. A limitation of the study is that only Android and iOS apps were reviewed.ConclusionsDespite the increasing Mobile Health (mHealth) market, this is the first study that demonstrates the lack of expert participation in the design of Urology apps, particularly in apps designed for the general public. Until clear regulation is enforced, the urological community should help regulate app development. Maintaining a register of certified apps or issuing an official scientific seal of approval could improve overall app quality. We propose that urologists become stakeholders in mHealth, shaping future app design and promoting peer-review app validation.
BackgroundMultivariable risk calculators (RCs) predicting prostate cancer (PCa) aim to reduce unnecessary workup (e.g., MRI and biopsy) by selectively identifying those men at risk for PCa or clinically significant PCa (csPCa) (Gleason ≥7). The lack of an adequate comparison makes choosing between RCs difficult for patients, clinicians and guideline developers. We aim to perform a head-to-head comparison of seven well known RCs predicting biopsy outcome.MethodsOur study comprised 7,119 men from ten independent contemporary cohorts in Europe and Australia, who underwent prostate biopsy between 2007 and 2015. We evaluated the performance of the ERSPC RPCRC, Finne, Chun, ProstataClass, Karakiewicz, Sunnybrook, and PCPT 2.0 (HG) RCs in predicting the presence of any PCa and csPCa. Performance was assessed by discrimination, calibration and net benefit analyses.ResultsA total of 3,458 (48%) PCa were detected; 1,784 (25%) men had csPCa. No particular RC stood out predicting any PCa: pooled area under the ROC-curve (AUC) ranged between 0.64 and 0.72. The ERSPC RPCRC had the highest pooled AUC 0.77 (95% CI: 0.73–0.80) when predicting csPCa. Decision curve analysis (DCA) showed limited net benefit in the detection of csPCa, but that can be improved by a simple calibration step. The main limitation is the retrospective design of the study.ConclusionsNo particular RC stands out when predicting biopsy outcome on the presence of any PCa. The ERSPC RPCRC is superior in identifying those men at risk for csPCa. Net benefit analyses show that a multivariate approach before further workup is advisable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.