Structure-based virtual screening (SBVS) methods often rely on docking score. The docking score is an over-simplification of the actual ligand-target binding. Its capability to model and predict the actual binding reality is limited. Recently, interaction fingerprinting (IFP) has come and offered us an alternative way to model reality. IFP provides us an alternate way to examine protein-ligand interactions. The docking score indicates the approximate affinity and IFP shows the interaction specificity. IFP is a method to convert three dimensional (3D) protein-ligand interactions into one dimensional (1D) bitstrings. The bitstrings are subsequently employed to compare the protein-ligand interaction predicted by the docking tool against the reference ligand. These comparisons produce scores that can be used to enhance the quality of SBVS campaigns. However, some IFP tools are either proprietary or using a proprietary library, which limits the access to the tools and the development of customized IFP algorithm. Therefore, we have developed PyPLIF, a Python-based open source tool to analyze IFP. In this article, we describe PyPLIF and its application to enhance the quality of SBVS in order to identify antagonists for estrogen α receptor (ERα).AvailabilityPyPLIF is freely available at http://code.google.com/p/pyplif
We describe here our tool named PyPLIF HIPPOS, which was newly developed to analyze the docking results of AutoDock Vina and PLANTS. Its predecessor, PyPLIF (https://github.com/radifar/pyplif), is a molecular interaction fingerprinting tool for the docking results of PLANTS, exclusively. Unlike its predecessor, PyPLIF HIPPOS speeds up the computational times by separating the reference generation and docking analysis. PyPLIF HIPPOS also offers more options compared to PyPLIF. PyPLIF HIPPOS for Linux is stored as the Supporting Information in this application note and can be accessed in GitHub (https://github. com/radifar/PyPLIF-HIPPOS). Additionally, we present here the application of the tool in a retrospective structure-based virtual screening campaign targeting neuraminidase.
Identification of Protein-Ligand Interaction Fingerprints (PLIF) has been performed as the rescoring strategy to identify the best pose for the docked poses of indomethacin-(R)-α-ethyl-etanolamide (IMM) in the binding site of cyclooxygenase-1 (COX-1) from simulations using PLANTS molecular docking software version 1.2 (PLANTS1.2). Instead of using the scoring functions included in the docking software, the strategy presented in this article used external software called PyPLIF that could identify the interactions of the ligand to the amino acid residues in the binding pocket and presents them as binary bitstrings, which subsequently were compared to the interaction bitstrings of the co-crystal ligand pose. The results show that PyPLIF-assisted redocking strategy could select the correct pose much better compared to the pose selection without rescoring. Out of 1000 iterative attempts, PyPLIF-assisted redocking simulations could identify 971 correct poses (more than 95%), while the redocking simulations without PyPLIF could only identify 500 correct poses (50%).These works have also provided us with the initial step of the construction of a valid Structure-Based Virtual Screening (SBVS) protocol to identify COX-1 inhibitors.
Structure-based virtual screening (SBVS) protocols were developed to find cyclooxygenase-2 (COX-2) inhibitors using the Protein-Ligand ANT System (PLANTS) docking software. The directory of useful decoys (DUD) dataset for COX-2 was used to retrospectively validate the protocols; the DUD consists of 426 known inhibitors in 13289 decoys. Based on criteria used in the article describing DUD datasets, the default protocol showed poor results. However, having ARG513 as a hydrogen bond anchor increased the quality of the SBVS protocol. The modified protocol showed results that could be well considered, with a maximum enrichment factor (EFmax) value of 32.2.
Objective: The objective of this study is to construct predictive unbiased structure-based virtual screening (SBVS) protocols to identify potent ligands for estrogen receptor alpha by combining molecular docking, protein-ligand interaction fingerprinting (PLIF), and binary quantitative structureactivity relationship (QSAR) analysis using recursive partition and regression tree method. Methods:Employing the enhanced version of a directory of useful decoys, SBVS protocols using molecular docking simulations, and PLIF were constructed and retrospectively validated. To avoid bias, SMILES format of the compounds was used. The predictive abilities of the SBVS protocols were then compared based on the enrichment factor (EF) and the F-measure values. Results:The SBVS protocols resulted in this research were SBVS_1 (employing docking scores of the best pose on every compound to rank the results and selecting compounds within 1% false positives as positive), SBVS_2 (employing decision tree resulted from the binary QSAR analysis using docking scores and PLIF bitstrings of the best pose of every compound as descriptors), and SBVS_3 (employing decision tree resulted from the binary QSAR analysis using ensemble PLIF of the selected poses from optimized docking score as the cutoff). The EF values of SBVS_1, SBVS_2, and SBVS_3 are 28.315, 576.084, and 713.472, respectively, while their F-measure values are 0.310, 0.573, and 0.769, respectively. Conclusion:Highly predictive unbiased SBVS protocols to identify potent estrogen receptor alpha ligands were constructed. Further application in prospective screening is therefore highly suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.