These findings show that lactose intolerance significantly increased the need for oral T4 in hypothyroid patients.
The term “thyrogastric syndrome” defines the association between autoimmune thyroid disease and chronic autoimmune gastritis (CAG), and it was first described in the early 1960s. More recently, this association has been included in polyglandular autoimmune syndrome type IIIb, in which autoimmune thyroiditis represents the pivotal disorder. Hashimoto’s thyroiditis (HT) is the most frequent autoimmune disease, and it has been reported to be associated with gastric disorders in 10–40% of patients while about 40% of patients with autoimmune gastritis also present HT. Some intriguing similarities have been described about the pathogenic mechanism of these two disorders, involving a complex interaction among genetic, embryological, immunologic, and environmental factors. CAG is characterized by a partial or total disappearance of parietal cells implying the impairment of both hydrochloric acid and intrinsic factor production. The clinical outcome of this gastric damage is the occurrence of a hypochlorhydric-dependent iron-deficient anemia, followed by pernicious anemia concomitant with the progression to a severe gastric atrophy. Malabsorption of levothyroxine may occur as well. We have briefly summarized in this minireview the most recent achievements on this peculiar association of diseases that, in the last years, have been increasingly diagnosed.
The key role of an intact gastric acid secretion for subsequent intestinal T4 absorption is supported by an increased requirement of thyroxine in patients with gastric disorders. A better pH-related dissolution profile has been described in vitro for softgel T4 preparation than for T4 tablets. Our study was aimed at comparing softgel and tablet T4 requirements in patients with gastric disorders. A total of 37 patients with gastric-related T4 malabsorption were enrolled, but only 31 (28F/3M; median age = 50 years; median T4 dose = 2.04 μg/kg/day) completed the study. All patients were in long-lasting treatment (>2 years) with the same dose of T4 tablets when treatment was switched to a lower dose of softgel T4 capsules (-17 %; p = 0.0002). Assessment of serum FT4 and TSH was carried out at baseline and after 3, 6, 12, and 18 months after the treatment switch. In more than 2/3 of patients (good-responders n = 21), despite the reduced dose of T4, median TSH values were similar at each time point (p = 0.3934) with no change in FT4 levels. In the remaining patients (poor-responders n = 10), TSH levels were significantly higher at each time point than at baseline (p < 0.0001). To note, in five of them intestinal comorbidity was subsequently detected. Comorbidity associated with poor-responders status was the only significant predictor in multivariate analysis (OR = 11.333). Doses of softgel T4 capsules lower than T4 tablet preparation are required to maintain the therapeutic goal in 2/3 of patients with impaired gastric acid secretion.
Introduction:Struma ovarii is an ovarian teratoma, represented in more than 50% by thyroid tissue. Five percent of struma ovarii cases have been proven to be malignant and, as in the thyroid gland, papillary thyroid carcinoma is the most common histotype arising in struma ovarii. Because of the unusual occurrence of this tumor, its management and follow-up after pelvic surgery is still controversial. Usually, total thyroidectomy followed by radioiodine treatment is the choice treatment in metastatic malignant struma ovarii, while these procedures are still controversial in non-metastatic thyroid cancer arising in struma ovarii.Case Presentation:We report a female with follicular variant of papillary thyroid carcinoma arising in struma ovarii. After pelvic surgery, thyroid morphofunctional examinations were performed and a single nodular lesion in the left lobe was discovered. The patient underwent total thyroidectomy and histological examination showed a papillary carcinoma. Radioiodine-ablation of residual thyroid tissue was performed and levothyroxine mildly-suppressive treatment was started.Conclusions:A more aggressive treatment should not be denied for malignant struma ovarii without any evidence, even when apparently confined into the ovary. However, in selected cases, aggressive treatment may be advisable to decrease the risk of recurrence and to allow an accurate follow-up.
Objective: Thyroxine (T 4 ) requirement after total thyroidectomy for differentiated thyroid carcinoma (DTC) is a debated issue. As most of the studies in the area have been retrospective and/or performed with heterogeneous therapeutic approaches, we designed our study to determine T 4 requirement in the same patients and treatment settings, before and after total thyroidectomy. Design, patients and methods: This was a longitudinal study including 23 goitrous patients treated with T 4 in an individually tailored fashion. All patients exhibited a stable TSH (median TSHZ0.28 mU/l) at a stable T 4 dose for at least 1 year before surgery (median T 4 doseZ1.50 mg/kg per day). The patients underwent total thyroidectomy based on cancer suspicion or compressive symptoms. Eventually diagnosed as having DTC (pT1b-pT2N0) and following surgical and radiometabolic treatment, they were treated with the same pre-surgical doses of T 4 . Results: Three months after surgery,using the same pre-surgical dose, median TSH increased up to 5.38 mU/l (P!0.0001) and so the T 4 dose had to be increased (median T 4 doseZ1.95 mg/kg per day; C30%; P!0.0001). Once divided by patients' age, we observed that, after thyroidectomy and maintaining the same pre-surgical dose, serum TSH significantly increased both in younger and in older patients (median TSHZ4.57 and 6.11 mU/l respectively). Serum TSH was restored to the pre-surgical level by increasing the dose up to 1.95 and 1.77 mg/kg per day (C25 and C21%) respectively. Conclusions: Following the same treatment regimen, a thyroidectomized patient requires one-third higher therapeutic T 4 dose than before surgery. Despite this increase, the dose of T 4 needed in our patients remains significantly lower than that previously described in athyreotic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.