A great deal of attention has been recently given to Machine Learning (ML) techniques in many different application fields. This paper provides a vision of what ML can do in Power Line Communications (PLC). We firstly and briefly describe classical formulations of ML, and distinguish deterministic from statistical learning models with relevance to communications. We then discuss ML applications in PLC for each layer, namely, for characterization and modeling, for the development of physical layer algorithms, for media access control and networking. Finally, other applications of PLC that can benefit from the usage of ML, as grid diagnostics, are analyzed. Illustrative numerical examples are reported to serve the purpose of validating the ideas and motivate future research endeavors in this stimulating signal/data processing field.
The autoencoder concept has fostered the reinterpretation and the design of modern communication systems. It consists of an encoder, a channel, and a decoder block which modify their internal neural structure in an end-to-end learning fashion. However, the current approach to train an autoencoder relies on the use of the cross-entropy loss function. This approach can be prone to overfitting issues and often fails to learn an optimal system and signal representation (code). In addition, less is known about the autoencoder ability to design channel capacity-approaching codes, i.e., codes that maximize the input-output mutual information under a certain power constraint. The task being even more formidable for an unknown channel for which the capacity is unknown and therefore it has to be learnt.In this paper, we address the challenge of designing capacity-approaching codes by incorporating the presence of the communication channel into a novel loss function for the autoencoder training. In particular, we exploit the mutual information between the transmitted and received signals as a regularization term in the cross-entropy loss function, with the aim of controlling the amount of information stored. By jointly maximizing the mutual information and minimizing the cross-entropy, we propose a theoretical approach that a) computes an estimate of the channel capacity and b) constructs an optimal coded signal approaching it. Theoretical considerations are made on the choice of the cost function and the ability of the proposed architecture to mitigate the overfitting problem. Simulation results offer an initial evidence of the potentiality of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.