Experiments on clinical datasets of H&N patients demonstrated the effectiveness of the proposed deep neural network segmentation method for multi-organ segmentation on volumetric CT scans. The accuracy and robustness of the segmentation were further increased by incorporating shape priors using SMR. The proposed method showed competitive performance and took shorter time to segment multiple organs in comparison to state of the art methods.
Purpose Image‐guided radiotherapy provides images not only for patient positioning but also for online adaptive radiotherapy. Accurate delineation of organs‐at‐risk (OARs) on Head and Neck (H&N) CT and MR images is valuable to both initial treatment planning and adaptive planning, but manual contouring is laborious and inconsistent. A novel method based on the generative adversarial network (GAN) with shape constraint (SC‐GAN) is developed for fully automated H&N OARs segmentation on CT and low‐field MRI. Methods and material A deep supervised fully convolutional DenseNet is employed as the segmentation network for voxel‐wise prediction. A convolutional neural network (CNN)‐based discriminator network is then utilized to correct predicted errors and image‐level inconsistency between the prediction and ground truth. An additional shape representation loss between the prediction and ground truth in the latent shape space is integrated into the segmentation and adversarial loss functions to reduce false positivity and constrain the predicted shapes. The proposed segmentation method was first benchmarked on a public H&N CT database including 32 patients, and then on 25 0.35T MR images obtained from an MR‐guided radiotherapy system. The OARs include brainstem, optical chiasm, larynx (MR only), mandible, pharynx (MR only), parotid glands (both left and right), optical nerves (both left and right), and submandibular glands (both left and right, CT only). The performance of the proposed SC‐GAN was compared with GAN alone and GAN with the shape constraint (SC) but without the DenseNet (SC‐GAN‐ResNet) to quantify the contributions of shape constraint and DenseNet in the deep neural network segmentation. Results The proposed SC‐GAN slightly but consistently improve the segmentation accuracy on the benchmark H&N CT images compared with our previous deep segmentation network, which outperformed other published methods on the same or similar CT H&N dataset. On the low‐field MR dataset, the following average Dice's indices were obtained using improved SC‐GAN: 0.916 (brainstem), 0.589 (optical chiasm), 0.816 (mandible), 0.703 (optical nerves), 0.799 (larynx), 0.706 (pharynx), and 0.845 (parotid glands). The average surface distances ranged from 0.68 mm (brainstem) to 1.70 mm (larynx). The 95% surface distance ranged from 1.48 mm (left optical nerve) to 3.92 mm (larynx). Compared with CT, using 95% surface distance evaluation, the automated segmentation accuracy is higher on MR for the brainstem, optical chiasm, optical nerves and parotids, and lower for the mandible. The SC‐GAN performance is superior to SC‐GAN‐ResNet, which is more accurate than GAN alone on both the CT and MR datasets. The segmentation time for one patient is 14 seconds using a single GPU. Conclusion The performance of our previous shape constrained fully CNNs for H&N segmentation is further improved by incorporating GAN and DenseNet. With the novel segmentation method, we showed that the low‐field MR images acquired on a MR‐guided radiation radiotherapy syste...
Accurate segmentation of organs at risk (OARs) is necessary for adaptive head and neck (H&N) cancer treatment planning, but manual delineation is tedious, slow, and inconsistent. A self-channel-and-spatial-attention neural network (SCSA-Net) is developed for H&N OAR segmentation on CT images. To simultaneously ease the training and improve the segmentation performance, the proposed SCSA-Net utilizes the self-attention ability of the network. Spatial and channel-wise attention learning mechanisms are both employed to adaptively force the network to emphasize the meaningful features and weaken the irrelevant features simultaneously. The proposed network was first evaluated on a public dataset, which includes 48 patients, then on a separate serial CT dataset, which contains ten patients who received weekly diagnostic fan-beam CT scans. On the second dataset, the accuracy of using SCSA-Net to track the parotid and submandibular gland volume changes during radiotherapy treatment was quantified. The Dice similarity coefficient (DSC), positive predictive value (PPV), sensitivity (SEN), average surface distance (ASD), and 95% maximum surface distance (95SD) were calculated on the brainstem, optic chiasm, optic nerves, mandible, parotid glands, and submandibular glands to evaluate the proposed SCSA-Net. The proposed SCSA-Net consistently outperforms the state-of-the-art methods on the public dataset. Specifically, compared with Res-Net and SE-Net, which is constructed from squeeze-and-excitation block equipped residual blocks, the DSC of the optic nerves and submandibular glands is improved by 0.06, 0.03 and 0.05, 0.04 by the SCSA-Net. Moreover, the proposed method achieves statistically significant improvements in terms of DSC on all and eight of nine OARs over Res-Net and SE-Net, respectively. The trained network was able to achieve good segmentation results on the serial dataset, but the results were further improved after fine-tuning of the model using the simulation CT images. For the parotids and submandibular glands, the volume changes of individual patients are highly consistent between the automated and manual segmentation (Pearson’s correlation 0.97–0.99). The proposed SCSA-Net is computationally efficient to perform segmentation (sim 2 s/CT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.