In order to expand the speed range for an indirect matrix converter–surface mounted permanent magnet synchronous motor drive (IMC-SPMSM), a wide speed range operation control strategy based on a flux-weakening control and an over-modulation method is proposed in this paper. In the stage of the inverter, an IMC over-modulation method is designed, which increases the fundamental voltage transmission ratio (VTR) to 1. In addition, considering the variation of the voltage limit boundary of the IMC with motor speed, flux-weakening control is implemented based on the voltage error feedback method, which maximizes the voltage utilization rate by setting the endpoint of the output voltage vector on the voltage boundary during the flux-weakening operation. In the stage of the rectifier, over-modulation is automatically switched on or off according to operation requirements by a modulation depth controller. Finally, experimental results show that the proposed strategy increases the maximum speed of the IMC-SPMSM by nearly 35% compared to the maximum torque per ampere (MTPA) method. Besides, the enlarged voltage margin by the rectifier stage over-modulation effectively shortens the setting time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.