We have completed the design of an early warning and evaluation analysis module based on machine learning algorithms. Aiming at the prestressed CFRP-strengthened reinforced concrete bridges under natural exposure, we developed a theoretical model to analyze the long-term prestress loss of reinforced parts and the adhesion behavior of the CFRP-concrete interface under natural exposure conditions. The analysis deeply reveals the technical and engineering geomechanics characteristics of the D bridge. At the same time, through a series of experimental studies on the D bridge condition monitoring system, the data acquisition and transmission, processing and control of the D bridge condition monitoring system, and the bridge condition monitoring and evaluation software are provided. Regarding how to repair the engineering geomechanical characteristics of D bridge, we mentioned the prestressed CFRP reinforcement technology. The prestressed carbon fiber reinforced composite (CFRP) structure made of reinforced concrete (RC) makes better use of the high-strength characteristics of CFRP and changes. It strengthens the stress distribution of the components and improves the overall strength of the components. It is more supported by engineers in the civil engineering and transportation departments. However, most prestressed CFRP-reinforced RC structures are located in natural exposure environments, and the effect of natural exposure environments on the long-term mechanical properties of prestressed C FRP-reinforced RC components is still unclear. This article mainly uses the research on the engineering geomechanics characteristics and reinforcement technology of the bridge body, so that people have a deep understanding of its concept, and provides reasonable use methods and measures for the maintenance and protection of the bridge body in the future. This paper studies the characteristics of engineering geomechanics based on machine learning algorithms and applies them to the research of CFRP reinforcement technology, aiming to promote its better development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.