Noninvasive glucose monitoring development is critical for diabetic patient continuous monitoring. However, almost all the available devices are invasive and painful. Noninvasive methods such as using spectroscopy have shown some good results. Unfortunately, the drawback was that the tungsten halogen lamps usage that is impractical if applied on human skin. This paper compared the light emitting diode (LED) to traditional tungsten halogen lamps as light source for glucose detection where the type of light source plays an important role in achieving a good spectrum quality. Glucose concentration measurement has been developed as part of noninvasive technique using optical spectroscopy. Small change and overlapping in tungsten halogen results need to replace it with a more convenient light source such as LED. Based on the result obtained, the performance of LED for absorbance spectrum gives a signi¯cantly di®erent and is directly proportional to the glucose concentration. The result shows a linear trend and successfully detects lowest at 60 to 160 mg/dL glucose concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.