Riparian areas hold vast number of flora and fauna with exceptional contributions to the ecosystem. A study was conducted in Sungai Sepetang, Sungai Rembau and Sungai Chukai to identify the insect community in a riparian zone of Peninsular Malaysia. Sampling was conducted in six consecutive months from December 2017 to May 2018 during both day and night using sweep nets. Twenty sampling stations (S1-S20) had been assembled along the riverbanks with an average distance of 200 m between each station. The 17,530 collected insects were from 11 orders and consisted of Diptera, Coleoptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera, Orthoptera, Blattodea, Thysanoptera, Mantodea and Odonata. The three most abundant orders were Diptera (33.84%; 5933 individuals), Coleoptera (28.82%; 5053 individuals) and Hemiptera (25.62%: 4491 individuals). The collected insect community consisted of different guilds such as the scavenger, predator, herbivore, pollinator and parasitoid. Sungai Sepetang and Sungai Rembau were dominated by mangrove flora, Sonneratia caseolaris (Myrtales: Lythraceae), while Sungai Chukai was dominated by Barringtonia racemosa. There was a significant difference (p < 0.05) in the composition of insects between the three rivers though clustering analysis showed that the insect communities in Sungai Sepetang and Sungai Rembau were 100% similar compared to Sungai Chukai which consisted of a totally different community. There is a significant negative correlation between abundance of insects with salinity and wind speed at Sungai Chukai and Sungai Sepetang.
In this work, chemically treated microcrystalline cellulose (MCC-C) was extracted from coconut husk fiber. In order to extract hemicellulose, the sieved coconut husk fiber was treated with sodium hydroxide (NaOH) for dewaxing and acidified using sodium chlorite (NaClO2) to extract the residual lignin (bleaching process). The obtained lignin-free cellulose was then treated with potassium hydroxide (KOH). The characterizations used to equate the MCC-C with commercial grade microcrystalline cellulose (MCC) are solubility test, X-ray diffractogram (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The XRD showed that the crystallinity of MCC and MCC-C increased significantly by 80.15% and 71.8% by chemical treatments. TGA found that the active removal of lignin-hemicelluloses and the thermal stability of the material were about 350–500°C and 300–500°C. The morphology of the fiber confirmed that there is an irregular cross-section, non-uniform surface, a large amount of short microfibrils and some impurities on the surface of the coconut husk fiber. The findings showed that microcrystalline cellulose has been successfully extracted from coconut husk fiber and that it can be used further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.