The effects of carbon nanofibers addition on transport and superconducting properties of YBa2Cu3O7−δ (Y-123) superconductor were studied. Y-123 was prepared using co-precipitation method for good quality bulk of high temperature superconducting material. Carbon nanofibers with 0.2–0.8 wt% were added into Y-123 superconductors. The samples were characterized using electrical resistance measurement for critical temperature (Tc) and critical current density (Jc), powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis. Most of the samples indicated a dominant Y-123 phase of an orthorhombic structure with a minor phase of BaCO3 and Y-124. Onset critical temperature was found to decrease from 90.5 to 80 K with increasing of carbon nanofibers concentration. The Jc for pure sample is 11 A/cm2 at 30 K while the Jc of sample with 0.4 wt% carbon nanofibers is 830 A/cm2 at 30 K. Introduction of carbon nanofibers enhanced Jc significantly. However, further addition of carbon nanofibers in Y-123 superconductor caused degradation in Jc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.