Abstract. This project introduces a simulation of Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controller based on a virtual Type 1 Diabetes Mellitus (T1DM) patient: Hovorka diabetic model using MATLABSimulink software. The results of these simulations are based on three tuning responses for each controller which are fast, slow and oscillation responses. The main purpose of this simulation is to achieve an acceptable stability and fastness response towards the regulation of glucose concentration using PD and PID controller response with insulin infusion rate. Therefore, in order to analyze and compare the responses of both controller performances, one-day simulations of the insulin-glucose dynamic have been conducted using a typical day meal plan that contains five meals of different bolus size. It is found that the PID closed-loop control with a short rise time is required to retrieve a satisfactory glucose regulation.
Abstract. In this paper, the research is focusing on Type 1 Diabetes Mellitus (T1DM). Since this disease requires a full attention on the blood glucose concentration with the help of insulin injection, it is important to have a tool that able to predict that level when consume a certain amount of carbohydrate during meal time. Therefore, to make it realizable, a Hovorka model which is aiming towards T1DM is chosen in this research. A high-level language is chosen that is C++ to construct the mathematical model of the Hovorka model. Later, this constructed code is converted into intellectual property (IP) which is also known as a hardware accelerator by using of high-level synthesis (HLS) approach which able to improve in terms of design and performance for glucose-insulin analysis tool later as will be explained further in this paper. This is the first step in this research before implementing the design into system-on-chip (SoC) to achieve a highperformance system for the glucose-insulin analysis tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.