Understanding dietary diversity is a fundamental task in the study of stump-tailed macaque, Macaca arctoides in its natural habitat. However, direct feeding observation and morphological identification using fecal samples are not effective and nearly impossible to obtain in natural habitats because this species is sensitive to human presence. As ecological methods are challenging and time-consuming, DNA metabarcoding offers a more powerful assessment of the diet. We used a chloroplast tRNL DNA metabarcoding approach to identify the diversity of plants consumed by free-ranging M. arctoides in the Malaysia–Thailand border region located in Perlis State Park, Peninsular Malaysia. DNA was extracted from three fecal samples, and chloroplast tRNL DNA was amplified and sequenced using the Illumina MiniSeq platform. Sequences were analyzed using the CLC Genomic Workbench software. A total of 145 plant species from 46 families were successfully identified as being consumed by M. arctoides. The most abundant species were yellow saraca, Saraca thaipingensis (11.70%), common fig, Ficus carica (9.33%), aramata, Clathrotropis brachypetala (5.90%), sea fig, Ficus superba (5.44%), and envireira, Malmea dielsiana (1.70%). However, Clathrotropis and Malmea are not considered Malaysian trees because of limited data available from Malaysian plant DNA. Our study is the first to identify plant taxa up to the species level consumed by stump-tailed macaques based on a DNA metabarcoding approach. This result provides an important understanding on diet of wild M. arctoides that only reside in Perlis State Park, Malaysia.
The long-tailed macaque (Macaca fascicularis) has a wide range in both Peninsular Malaysia and Borneo. Although the primates are especially vulnerable to habitat alterations, this primate lives in disturbed habitats due to human-induced land-use. Thus, this study presents a faecal metabarcoding approach to clarify the plant diet of long-tailed macaques from five locations in Peninsular Malaysia to represent fragmented forest, forest edge, island and recreational park habitats. We extracted genomic DNA from 53 long-tailed macaque faecal samples. We found 47 orders, 126 families, 609 genera and 818 species across these five localities. A total of 113 plant families were consumed by long-tailed macaques in Universiti Kebangsaan Malaysia, 61 in the Malaysia Genome and Vaccine Institute, 33 in Langkawi Island, 53 in Redang Island and 44 in the Cenderawasih Cave. Moraceae (33.24%) and Fabaceae (13.63%) were the most common families consumed by long-tailed macaques from the study localities. We found that habitat type impacted diet composition, indicating the flexibility of foraging activities. This research findings provide an understanding of plant dietary diversity and the adaptability of this macaque with the current alteration level that applies to long-tailed macaque conservation management interest in the future.
Abstract. Abdul-Manan MN, Mohd-Ridwan AR, Aifat NR, Osman NA, Abdul-Latiff MA, Dharmalingam S, Md-Zain BM. 2020. Short Communication: Effectiveness of nuclear gene in species and subspecies determination of captive orangutans. Biodiversitas 21: 3665-3669. Genetic identification of captive orangutans is of paramount importance in providing a correct identity that is essential for captive management. Thus, the utility of nuclear DNA sequences was tested in this study to identify the genetic identity of captive orangutans at Bukit Merah Orang Utan Island. Out of 24 DNA samples that were successfully extracted, only 10 orangutan samples were successfully sequenced for the von Willebrand factor (vWF) gene. From the results, this gene was able to separate the genus Pongo at the species level. Distance and character analyses indicated that a clear separation between P. pygmaeus and P. abelii at the species level. However, the degree of separation at species level was indicated in tree topology with moderate bootstrap values. At the subspecies level of P. pygmaeus, this gene was unable to show a clear separation between three Bornean subspecies. All the subspecies were formed clade together with each other. The vMF gene is a good nuclear gene for the study of phylogenetic relationships of orangutans in captivity at the species level, but the genetic identification at subspecies level in the genus level remains unclear. We suggest that future studies should involve multiple independent nuclear markers to increase the probability of getting reliable results.
Background: Minangkabau Malays (Melayu Minangkabau) is one of the Malay sub ethnic groups in Peninsular Malaysia. During the late 17th and early 18th centuries, migration of the Minangs from West Sumatra to the state of Negeri Sembilan Darul Khusus in Peninsular Malaysia took place and their descendants now form the main sub ethnic group in this state. The genetic polymorphisms of Y chromosome at DYS 287 locus were analyzed in Minangkabau Malays. Methods: A total of 41 buccal cells from healthy unrelated individual's males from Minangkabau Malays were typed for the DYS 287. The PCR products were separated on 2% (w/v) agarose gel followed by visualization under UV light. Results: Three out of 41 samples (7.32%) showed insertion (YAP+) polymorphism, while the rest of the samples (92.68%) showed deletion (YAP-) polymorphism. This is the first report concerning the YAP in Malay population at Peninsular Malysia. Conclusion: The vAluable data obtained in this study will contribute to fill in the gap in the knowledge of YAP distribution in Malaysian population and will allow continuous interpretation of the evolution of YAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.