This paper explains a simple and efficient methodology for calculating monthly energy losses (EL) using the load loss factor technique and a representative composite load profile. One of the important benefits of the proposed work is a simpler, more efficient and less rigorous method to estimate the system-wide energy loss of an extensive distribution network with reasonable accuracy. The sum of all EL provided by each feeder section is used to calculate the total feeder EL. A base case feeder with a typical cable type and power factor is used to generate regression equations, a peak power loss function to estimate the EL. A case study is then used to show the models and techniques that have been established. The result indicates a high level of agreement with the time-series load flow simulations (smaller than 10% deviations). With this model, an approach to estimate the EL of all radial feeders of various configurations and characteristics could be extended and implemented. The spreadsheet approach is ideal for completing a quick energy audit of existing distribution feeder EL and determining the sensitivity of distribution network efficiency to changes in feeder sections and load characteristics.
This paper explains a simple and efficient methodology for calculating monthly energy losses (EL) using the load loss factor technique and a representative composite load profile. One of the important benefits of the proposed work is a simpler, more efficient and less rigorous method to estimate the system-wide energy loss of an extensive distribution network with reasonable accuracy. The sum of all EL provided by each feeder section is used to calculate the total feeder EL. A base case feeder with a typical cable type and power factor is used to generate regression equations, a peak power loss function to estimate the EL. A case study is then used to show the models and techniques that have been established. The result indicates a high level of agreement with the time-series load flow simulations (smaller than 10% deviations). With this model, an approach to estimate the EL of all radial feeders of various configurations and characteristics could be extended and implemented. The spreadsheet approach is ideal for completing a quick energy audit of existing distribution feeder EL and determining the sensitivity of distribution network efficiency to changes in feeder sections and load characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.