Geoeffective solar events, especially the coronal mass ejection (CME) and the high-speed solar wind (HSSW) will induce geomagnetic storm upon its arrival to Earth. The solar events could trigger an earthquake occurred during the arrival. In this study, the focus is on the proxy of the geoeffective solar events, which is the geomagnetic Ap index and the data of shallow worldwide earthquakes. The main objective was to investigate the impact of geomagnetic storms on the occurrences of earthquakes from 1994 to 2017 from a statistical perspective. The geomagnetic Ap index data was obtained from the Helmholtz-Centre Postdam - GFZ German Research Centre for Geosciences and the shallow worldwide earthquake data were from the United States Geological Survey (USGS) earthquake catalogue. The Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were used to analyse the data. Two groups were obtained from the PCA biplot: Group 1 - before the event (Day-4 to Day-1) and Group 2 - after the event group (Day 0 to Day+4). A two-cluster solution was obtained from the HCA, which shows that days before and after geostorm are divided into two main clusters. The statistical results show that earthquakes activity might have different behaviour before and after the geostorm occurred. In conclusion, the results emphasize that there are differences between days before and after the geostorm occurrence, hence, the solar influence upon earthquake occurrences cannot be neglected entirely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.