For decades, the effect of surfactants in the sea-surface microlayer (SML) on gas transfer velocity ( k ) has been recognized; however, it has not been quantified under natural conditions due to missing coherent data on in situ k of carbon dioxide (CO 2 ) and characterization of the SML. Moreover, a sea-surface phenomenon of wave-dampening, known as slicks, has been observed frequently in the ocean and potentially reduces the transfer of climate-relevant gases between the ocean and atmosphere. Therefore, this study aims to quantify the effect of natural surfactant and slicks on the in situ k of CO 2 . A catamaran, Sea Surface Scanner (S 3 ), was deployed to sample the SML and corresponding underlying water, and a drifting buoy with a floating chamber was deployed to measure the in situ k of CO 2 . We found a significant 23% reduction of k above surfactant concentrations of 200 µg Teq l −1 , which were common in the SML except for the Western Pacific. We conclude that an error of approximately 20% in CO 2 fluxes for the Western Pacific is induced by applying wind-based parametrization not developed in low surfactant regimes. Furthermore, we observed an additional 62% reduction in natural slicks, reducing global CO 2 fluxes by 19% considering known frequency of slick coverage. From our observation, we identified surfactant concentrations with two different end-members which lead to an error in global CO 2 flux estimation if ignored.
This paper describes a state-of-the-art research catamaran to investigate processes such as air–sea gas exchange, heat exchange, surface blooms, and photochemistry at the sea surface microlayer (SML) with high-resolution measurements of 0.1-Hz frequency. As the boundary layer between the ocean and the atmosphere, the SML covers 70% of Earth. The remote-controlled Sea Surface Scanner is based on a glass disk sampler to automate the sampling of the thin SML, overcoming the disadvantages of techniques such as low volume sampling and ex situ measurement of the SML. A suite of in situ sensors for seven biogeochemical parameters (temperature, pH, dissolved oxygen, salinity, chromophoric dissolved organic matter, chlorophyll-a, and photosynthetic efficiency) was implemented to characterize the SML in reference to the mixed bulk water. The Sea Surface Scanner has the capability to collect 24 discrete water samples with a volume of 1 L each for further laboratory analysis. Meteorological parameters such as wind speed influence SML properties and are continuously monitored. This paper reports the use of the Sea Surface Scanner to identify and study (i) upwelling regions and associated fronts, (ii) rain events, and (iii) the occurrence of surface blooms. The high patchiness of the SML was detected during the observed sea surface phenomena, and high-resolution mapping of the biogeochemical parameters of the oceanic boundary layer to the atmosphere are presented for the first time. The Sea Surface Scanner is a new technology to map and understand sea surface processes and, ultimately, to fill the gaps in knowledge about ocean–atmosphere interactions relevant to ocean and climate science.
This study aims to determine the source apportionment of surfactants in marine aerosols at two selected stations along the Malacca Straits. The aerosol samples were collected using a high volume sampler equipped with an impactor to separate coarse- and fine-mode aerosols. The concentrations of surfactants, as methylene blue active substance and disulphine blue active substance, were analysed using colorimetric method. Ion chromatography was employed to determine the ionic compositions. Principal component analysis combined with multiple linear regression was used to identify and quantify the sources of atmospheric surfactants. The results showed that the surfactants in tropical coastal environments are actively generated from natural and anthropogenic origins. Sea spray (generated from sea-surface microlayers) was found to be a major contributor to surfactants in both aerosol sizes. Meanwhile, the anthropogenic sources (motor vehicles/biomass burning) were predominant contributors to atmospheric surfactants in fine-mode aerosols.
We developed an effective fluorometric technique to quantify extracellular carbonic anhydrase (eCA) present in natural seawater samples. The technique includes the separation of eCA from cells to achieve low detection limits through high signal : noise ratios. eCA was efficiently extracted from cell membranes by treatment with 0.1 M phosphate buffer containing 2.5 M NaCl. The free eCA specifically forms a fluorescent complex with dansylamide, and the detection limit of the complex is below 0.1 nM. We applied the technique to samples from different culture solutions and natural seawater collected from the Baltic Sea. We observed eCA concentrations to be in the range of 0.10-0.67 nM in natural seawater. The data indicated that this technique is very sensitive, accurate, and feasible for routine and shipboard measurement of eCA from natural seawater. It is therefore an effective and rapid tool to investigate the carbon acquisition of phytoplankton both in mono culture as well natural communities.Extracellular carbonic anhydrase (eCA) is a zinccontaining enzyme that catalyzes the slow interconversion between HCO 2 3 and CO 2 at the cell surface (Aizawa and Miyachi 1986). In seawater, phytoplankton can be CO 2 -limited because dissolved inorganic carbon occurs mainly as HCO 2 3 . Due to the inefficient conversion toward HCO 2 3 , eCA is important for cellular CO 2 acquisition in phytoplankton.
This paper describes high‐resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and −0.49 practical salinity unit were found, but a substantially cooler (−0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.