The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
Textile waste cellulose nanofibrillated fibre has been reported with excellent strength reinforcement ability in other biopolymers. In this research cellulose nanofibrilated fibre (CNF) was isolated from the textile waste cotton fabrics with combined supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was used to enhance the polylactic acid/chitin (PLA/chitin) properties. The properties enhancement effect of the CNF was studied by characterising the PLA/chitin/CNF biocomposite for improved mechanical, thermal, and morphological properties. The tensile properties, impact strength, dynamic mechanical analysis, thermogravimetry analysis, scanning electron microscopy, and the PLA/chitin/CNF biocomposite wettability were studied. The result showed that the tensile strength, elongation, tensile modulus, and impact strength improved significantly with chitin and CNF compared with the neat PLA. Furthermore, the scanning electron microscopy SEM (Scanning Electron Microscopy) morphological images showed uniform distribution and dispersion of the three polymers in each other, which corroborate the improvement in mechanical properties. The biocomposite’s water absorption increased more than the neat PLA, and the contact angle was reduced. The results of the ternary blend compared with PLA/chitin binary blend showed significant enhancement with CNF. This showed that the three polymers’ combination resulted in a better material property than the binary blend.
Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.