Abstract. Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.
The shear wave velocity (Vs) is an important dynamic parameter in the field of geotechnical engineering. One of the surface wave methods is Spectral Analysis of Surface Wave (SASW) has received attention in obtaining the shear wave velocity (Vs) profile by analysing the dispersion curve. SASW is a non-destructive test, fast and time-effective for field survey. Thus, this paper proposed the application of SASW method to obtain the shear wave velocity (Vs) to represent the soil profile. This paper aims to determine the shear wave velocity (Vs) profile using SASW method, where the testing has been conducted at three site of residual soils located in Damansara, Kuala Lumpur and Nilai area. In this study, it shows that the soil profile obtained from shear wave velocity value is similar pattern with profile that obtained using Standard Penetration Testing (SPT), which conventional used in field. The shear wave velocity are proportionally increase with depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.