Abstract. Depth averaged equations are commonly used for modelling hydraulics problems. Nevertheless, the model may not be able to accurately assess the flow in the case of different flow regimes, such as hydraulic jump. The model requires appropriate numerical method or other numerical treatments in order to simulate the case accurately. A finite volume scheme with shock capturing may provide a good result, but it is time consuming as compared to the commonly used finite difference schemes. In this study, 1D St. Venant equation is solved using Artificial Viscosity Lax-Wendroff and Mac-Cormack with TVD filter schemes to simulate an experiment case of weir overflow. The case is chosen to test each scheme ability in simulating flow under different flow regimes. The simulation results are benchmarked to the observed experimental data from previous study. Additionally, to observe the scheme efficiency, the simulation time between the models are compared. Therefore, the most accurate and efficient scheme can be determined.
In numerical modeling, dam break is one case that has its own challenges, because shock wave is found in the dam break modeling that usually provides a numerical instability. Usually, dam break problem is solved by Saint Venant equation using a finite difference method with artificial dissipation or Total Variation Diminishing (TVD) filter. But in this research, finite element method and the finite difference method are used. To verify the accuracy of the model, a comparison against the Stoker analytical method for dam break case was performed. Numerical modeling of dam break is required to find out the collapse area, thus it is used for determining mitigation that can be done in the area, related to dam safety. In numerical modeling, oscillation or numerical instability often occurs, for which special treatment is required to reduce or eliminate the oscillations. In this research, the treatment for that case is a Hansen filter for both methods. From the simulation result, it is found that Hansen filter is sensitive in reducing oscillation depending on the correction factor value and Δt that used. For dam break case, after filter applied, the value of Pearson Correlation Coefficient of Taylor Galerkin and Mac-Cormack methods are 0.999. The error rate for a Taylor Galerkin method are 0.118% at t = 3s and 0.123% at t = 10s. The error rate for Mac-Cormack method are 0.043% at t = 3s and 5.048% at t = 10s. From the comparison of the model, it can be concluded that Taylor Galerkin finite element method proved to be capable and more accurate in simulating dam break compared to Mac-Cormack finite difference method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.