The research describes the development of an evaporative cooling system in a non-refrigerated truck for the short-term storage of vegetables during transportation. The system comprises an evaporative cooler, storage unit, power supply, control panel, and real-time data monitoring for temperature and relative humidity. Computational fluid dynamic (CFD) simulation was conducted to investigate the temperature and airflow distributions in the evaporative-cooled storage unit for five different configurations of air inlet and outlet. The configuration of one air inlet (front — lower left) and two air outlets (top — front and back centre) of the storage unit was shown to provide optimum temperature and airflow distributions and hence, was applied in the system modification. The functionality and performance of the modified system were then evaluated in terms of the cooling profile of the storage units and leafy vegetable quality for the fresh market. Three storage treatments for the selected vegetable were investigated, i.e., evaporative-cooled truck (T1), canvas truck (T2), and cold truck (T3) during a five-hour journey from Cameron Highlands to Serdang. The average temperature inside the storage units was T3 < T1 < T2. Evaporative-cooled truck exhibited an average temperature reduction (DT) of 10°C from the ambient condition. It also demonstrated a relative humidity of >90%, which was in agreement with the recommended relative humidity for leafy vegetable storage. Post-five-hour storage treatments, vegetable stored under T1 exhibited the least weight loss as compared to T2 and T3. The results indicated that the evaporative cooling system manages to preserve vegetable quality soon after harvesting, hence the potential to reduce postharvest loss during transportation.
The study presents the performance and potential of an evaporative-cooled storage system for the short-term storage of fruit vegetables during transportation. The evaporative cooler, storage unit, power supply, control panel, and real-time data monitoring system are the components of the evaporative-cooled storage system. In this study, the system performance was assessed in terms of the cooling profile of the storage unit (temperature and relative humidity profiles), and postharvest quality of the selected fruit vegetables (chili, tomato, and long bean) for the fresh market. Three storage treatments for the selected fruit vegetables were investigated, i.e., evaporative-cooled storage unit (T1), ambient room (T2), and cold room (T3). The average temperature inside the storage unit was T3 < T2 < T1. T1 demonstrated RH of > 90 %, in agreement with recommended RH for vegetable storage. Post-five-hour storage treatments, vegetables stored under T1 exhibited the least weight loss as compared to T2 and T3. The application of an evaporative-cooled storage system provided potential to preserve fruit vegetable postharvest quality during transportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.