Nanocrystalline cellulose is an abundant and inexhaustible organic material on Earth. It can be derived from many lignocellulosic plants and also from agricultural residues. They endowed exceptional physicochemical properties, which have promoted their intensive exploration in biomedical application, especially for tissue engineering scaffolds. Nanocrystalline cellulose has been acknowledged due to its low toxicity and low ecotoxicological risks towards living cells. To explore this field, this review provides an overview of nanocrystalline cellulose in designing materials of bone scaffolds. An introduction to nanocrystalline cellulose and its isolation method of acid hydrolysis are discussed following by the application of nanocrystalline cellulose in bone tissue engineering scaffolds. This review also provides comprehensive knowledge and highlights the contribution of nanocrystalline cellulose in terms of mechanical properties, biocompatibility and biodegradability of bone tissue engineering scaffolds. Lastly, the challenges for future scaffold development using nanocrystalline cellulose are also included.
The design of a scaffold of bone tissue engineering plays an important role in ensuring cell viability and cell growth. Therefore, it is a necessity to produce an ideal scaffold by predicting and simulating the properties of the scaffold. Hence, the computational method should be adopted since it has a huge potential to be used in the implementation of the scaffold of bone tissue engineering. To explore the field of computational method in the area of bone tissue engineering, this paper provides an overview of the usage of a computational method in designing a unit cell of bone tissue engineering scaffold. In order to design a unit cell of the scaffold, we discussed two categories of unit cells that can be used to design a feasible scaffold, which are non-parametric and parametric designs. These designs were later described and being categorised into multiple types according to their characteristics, such as circular structures and Triply Periodic Minimal Surface (TPMS) structures. The advantages and disadvantages of these designs were discussed. Moreover, this paper also represents some software that was used in simulating and designing the bone tissue scaffold. The challenges and future work recommendations had also been included in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.